A Comparison of Embedded Deep Learning Methods for Person Detection
(2019)
Presentation / Conference Contribution
Kim, C. E., Oghaz, M. M. D., Fajtl, J., Argyriou, V., & Remagnino, P. (2019, December). A Comparison of Embedded Deep Learning Methods for Person Detection. Presented at PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5
All Outputs (40)
Latent Bernoulli Autoencoder (2019)
Presentation / Conference Contribution
Fajtl, J., Argyriou, V., Monekosso, D., & Remagnino, P. (2019, December). Latent Bernoulli Autoencoder. Presented at 25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019) Assoc Informat Syst
Scene and Environment Monitoring Using Aerial Imagery and Deep Learning (2019)
Presentation / Conference Contribution
Oghaz, M. M., Razaak, M., Kerdegari, H., Argyriou, V., & Remagnino, P. (2019, December). Scene and Environment Monitoring Using Aerial Imagery and Deep Learning. Presented at 2019 15TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS) IEEE Comp Soc
Urban Scene Segmentation using Semi-supervised GAN (2019)
Presentation / Conference Contribution
Kerdegari, H., Razaak, M., Argyriou, V., & Remagnino, P. (2019, December). Urban Scene Segmentation using Semi-supervised GAN. Presented at IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV SPIE
Object 3D Reconstruction based on Photometric Stereo and Inverted Rendering (2018)
Presentation / Conference Contribution
Khadka, A. R., Remagnino, P., & Argyriou, V. (2018, December). Object 3D Reconstruction based on Photometric Stereo and Inverted Rendering. Presented at 2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY \& INTERNET BASED SYSTEMS (SITIS) IEEE Comp Soc; Univ Las Palmas Gran Canaria; Univ Milan; Univ Bourgogne, Laboratoire Electronique Image Informatique Res Grp; Natl Res Council Italy, Inst High
Multi-Organ Plant Classification Based on Convolutional and Recurrent Neural Networks (2018)
Journal Article
Lee, S. H., Chan, C. S., & Remagnino, P. (2018). Multi-Organ Plant Classification Based on Convolutional and Recurrent Neural Networks. IEEE Transactions on Image Processing, 27(9), 4287-4301. https://doi.org/10.1109/tip.2018.2836321
HGO-CNN: HYBRID GENERIC-ORGAN CONVOLUTIONAL NEURAL NETWORK FOR MULTI-ORGAN PLANT CLASSIFICATION (2017)
Presentation / Conference Contribution
Lee, S. H., Chang, Y. L., Chan, C. S., & Remagnino, P. (2017, December). HGO-CNN: HYBRID GENERIC-ORGAN CONVOLUTIONAL NEURAL NETWORK FOR MULTI-ORGAN PLANT CLASSIFICATION. Presented at 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) Inst Elect \& Elect Engineers; Inst Elect \& Elect Engineers Signal Proc Soc
How deep learning extracts and learns leaf features for plant classification (2017)
Journal Article
Lee, S. H., Chan, C. S., Mayo, S. J., & Remagnino, P. (2017). How deep learning extracts and learns leaf features for plant classification. Pattern Recognition, 71, 1-13. https://doi.org/10.1016/j.patcog.2017.05.015
DEEP-PLANT: PLANT IDENTIFICATION WITH CONVOLUTIONAL NEURAL NETWORKS (2015)
Presentation / Conference Contribution
Lee, S. H., Chan, C. S., Wilkin, P., & Remagnino, P. (2015, December). DEEP-PLANT: PLANT IDENTIFICATION WITH CONVOLUTIONAL NEURAL NETWORKS. Presented at 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) Inst Elect \& Elect Engineers; IEEE Signal Proc Soc
Reverse engineering expert visual observations: From fixations to the learning of spatial filters with a neural-gas algorithm (2013)
Journal Article
Cope, J., Remagnino, P., Mannan, S., Diaz, K., Ferri, F., & Wilkin, P. (2013). Reverse engineering expert visual observations: From fixations to the learning of spatial filters with a neural-gas algorithm. Expert Systems with Applications, 40(17), 6707-6712. https://doi.org/10.1016/j.eswa.2013.05.042
Laplacian Eigenmap With Temporal Constraints for Local Abnormality Detection in Crowded Scenes (2013)
Journal Article
Thida, M., Eng, H.-L., & Remagnino, P. (2013). Laplacian Eigenmap With Temporal Constraints for Local Abnormality Detection in Crowded Scenes. IEEE Transactions on Cybernetics, 43(6), 2147-2156. https://doi.org/10.1109/tcyb.2013.2242059
Retinal image analysis aimed at extraction of vascular structure using linear discriminant classifier (2013)
Presentation / Conference Contribution
Fraz, M., Remagnino, P., Hoppe, A., & Barman, S. (2013, December). Retinal image analysis aimed at extraction of vascular structure using linear discriminant classifier. Presented at INTERNATIONAL CONFERENCE ON COMPUTER MEDICAL APPLICATIONS (ICCMA' 2013) IEEE, Tunisia Sect; Dar Al Uloom Univ; N\&N Global Technologies; Future Technologies \& Innovat
Quantification of blood vessel calibre in retinal images of multi-ethnic school children using a model based approach (2013)
Journal Article
Fraz, M., Remagnino, P., Hoppe, A., Rudnicka, A., Owen, C., Whincup, P., & Barman, S. (2013). Quantification of blood vessel calibre in retinal images of multi-ethnic school children using a model based approach. Computerized Medical Imaging and Graphics, 37(1), 48-60. https://doi.org/10.1016/j.compmedimag.2013.01.004
Ensemble Classification System Applied for Retinal Vessel Segmentation on Child Images Containing Various Vessel Profiles (2012)
Presentation / Conference Contribution
Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A., Owen, C., & Barman, S. (2012, December). Ensemble Classification System Applied for Retinal Vessel Segmentation on Child Images Containing Various Vessel Profiles. Presented at IMAGE ANALYSIS AND RECOGNITION, PT II Assoc Image \& Machine Intelligence (AIMI)
Classifying Plant Leaves from Their Margins Using Dynamic Time Warping (2012)
Presentation / Conference Contribution
Cope, J. S., & Remagnino, P. (2012, December). Classifying Plant Leaves from Their Margins Using Dynamic Time Warping. Presented at ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2012) Brno Univ Technol; Camea; Ghent Univ; Honeywell; Redhat; Unis; Zoner
Classification of High-Dimension PDFs Using the Hungarian Algorithm (2012)
Presentation / Conference Contribution
Cope, J. S., & Remagnino, P. (2012, December). Classification of High-Dimension PDFs Using the Hungarian Algorithm. Presented at STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION Int Assoc Pattern Recognit; Int Assoc Pattern Recognit, Tech Comm 1, Stat Pattern Recognit Tech; Int Assoc Pattern Recognit, Tech Comm 2, Struct \& Syntact Pattern Recognit; Tohoku Univ; Hiroshima
A model based approach for vessel caliber measurement in retinal images (2012)
Presentation / Conference Contribution
Fraz, M. M., Remagnino, P., Hoppe, A., Barman, S. A., Rudnicka, A., Owen, C., & Whincup, P. (2012, December). A model based approach for vessel caliber measurement in retinal images. Presented at 8TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY \& INTERNET BASED SYSTEMS (SITIS 2012) IEEE Comp Soc; INCAR
An approach to localize the retinal blood vessels using bit planes and centerline detection (2012)
Journal Article
Fraz, M., Barman, S., Remagnino, P., Hoppe, A., Basit, A., Uyyanonvara, B., Rudnicka, A., & Owen, C. (2012). An approach to localize the retinal blood vessels using bit planes and centerline detection. Computer Methods and Programs in Biomedicine, 108(2), 600-616. https://doi.org/10.1016/j.cmpb.2011.08.009
Blood vessel segmentation methodologies in retinal images - A survey (2012)
Journal Article
Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A., Owen, C., & Barman, S. (2012). Blood vessel segmentation methodologies in retinal images - A survey. Computer Methods and Programs in Biomedicine, 108(1), 407-433. https://doi.org/10.1016/j.cmpb.2012.03.009
An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation (2012)
Journal Article
Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R., Owen, C. G., & Barman, S. A. (2012). An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation. IEEE Transactions on Biomedical Engineering, 59(9), 2538-2548. https://doi.org/10.1109/tbme.2012.2205687