Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Suppressing Dimer Formation by Increasing Conformational Freedom in Multi-Carbazole Thermally Activated Delayed Fluorescence Emitters (2020)
Journal Article
Salah, L., Etherington, M., Shuaib, A., Danos, A., Nazeer, A., Ghazal, B., Prlj, A., Turley, A., Mallick, A., McGonigal, P., Curchod, B., Monkman, A., & Makhseed, S. (2021). Suppressing Dimer Formation by Increasing Conformational Freedom in Multi-Carbazole Thermally Activated Delayed Fluorescence Emitters. Journal of Materials Chemistry C Materials for optical and electronic devices, 9(1), 189-198. https://doi.org/10.1039/d0tc04222f

Ideal emitters for organic light-emitting diodes (OLEDs) are capable of efficiently harvesting non-emissive triplet states, have high colour stabilities, and possess high photoluminescence quantum yields (PLQYs). Maintaining colour stability and PLQY... Read More about Suppressing Dimer Formation by Increasing Conformational Freedom in Multi-Carbazole Thermally Activated Delayed Fluorescence Emitters.

Investigation of Thermally Activated Delayed Fluorescence from a Donor–Acceptor Compound with Time-Resolved Fluorescence and Density Functional Theory Applying an Optimally Tuned Range-Separated Hybrid Functional (2020)
Journal Article
Scholz, R., Kleine, P., Lygaitis, R., Popp, L., Lenk, S., Etherington, M. K., Monkman, A. P., & Reineke, S. (2020). Investigation of Thermally Activated Delayed Fluorescence from a Donor–Acceptor Compound with Time-Resolved Fluorescence and Density Functional Theory Applying an Optimally Tuned Range-Separated Hybrid Functional. The Journal of Physical Chemistry A, 124(8), 1535-1553. https://doi.org/10.1021/acs.jpca.9b11083

Emitters showing thermally activated delayed fluorescence (TADF) in electroluminescent devices rely on efficient reverse intersystem crossing (rISC) arising from small thermal activation barriers between the lowest excited triplet and singlet manifol... Read More about Investigation of Thermally Activated Delayed Fluorescence from a Donor–Acceptor Compound with Time-Resolved Fluorescence and Density Functional Theory Applying an Optimally Tuned Range-Separated Hybrid Functional.