TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training
(2024)
Presentation / Conference Contribution
Li, L., Qiao, T., Shum, H. P. H., & Breckon, T. P. (2024, November). TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training. Presented at BMVC'24: The 35th British Machine Vision Conference, Glasgow, UK
All Outputs (3)
Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation (2023)
Presentation / Conference Contribution
Li, L., Shum, H. P., & Breckon, T. P. (2023, June). Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation. Presented at 2023 IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), Vancouver, BCWhilst the availability of 3D LiDAR point cloud data has significantly grown in recent years, annotation remains expensive and time-consuming, leading to a demand for semisupervised semantic segmentation methods with application domains such as auton... Read More about Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation.
DurLAR: A High-Fidelity 128-Channel LiDAR Dataset with Panoramic Ambient and Reflectivity Imagery for Multi-Modal Autonomous Driving Applications (2021)
Presentation / Conference Contribution
Li, L., Ismail, K. N., Shum, H. P., & Breckon, T. P. (2021, December). DurLAR: A High-Fidelity 128-Channel LiDAR Dataset with Panoramic Ambient and Reflectivity Imagery for Multi-Modal Autonomous Driving Applications. Presented at International Conference on 3D Vision, Surrey / OnlineWe present DurLAR, a high-fidelity 128-channel 3D LiDAR dataset with panoramic ambient (near infrared) and reflectivity imagery, as well as a sample benchmark task using depth estimation for autonomous driving applications. Our driving platform is eq... Read More about DurLAR: A High-Fidelity 128-Channel LiDAR Dataset with Panoramic Ambient and Reflectivity Imagery for Multi-Modal Autonomous Driving Applications.