Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Using Variable Natural Environment Brain-Computer Interface Stimuli for Real-time Humanoid Robot Navigation (2019)
Presentation / Conference Contribution
Aznan, N., Connolly, J., Al Moubayed, N., & Breckon, T. (2019, May). Using Variable Natural Environment Brain-Computer Interface Stimuli for Real-time Humanoid Robot Navigation. Presented at 2019 IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada

This paper addresses the challenge of humanoid robot teleoperation in a natural indoor environment via a Brain-Computer Interface (BCI). We leverage deep Convolutional Neural Network (CNN) based image and signal understanding to facilitate both real-... Read More about Using Variable Natural Environment Brain-Computer Interface Stimuli for Real-time Humanoid Robot Navigation.

Simulating Brain Signals: Creating Synthetic EEG Data via Neural-Based Generative Models for Improved SSVEP Classification (2019)
Presentation / Conference Contribution
Aznan, N., Atapour-Abarghouei, A., Bonner, S., Connolly, J., Al Moubayed, N., & Breckon, T. (2019, December). Simulating Brain Signals: Creating Synthetic EEG Data via Neural-Based Generative Models for Improved SSVEP Classification. Presented at International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary

Despite significant recent progress in the area of Brain-Computer Interface (BCI), there are numerous shortcomings associated with collecting Electroencephalography (EEG) signals in real-world environments. These include, but are not limited to, subj... Read More about Simulating Brain Signals: Creating Synthetic EEG Data via Neural-Based Generative Models for Improved SSVEP Classification.

On the Classification of SSVEP-Based Dry-EEG Signals via Convolutional Neural Networks (2018)
Presentation / Conference Contribution
Aznan, N., Bonner, S., Connolly, J., Al Moubayed, N., & Breckon, T. (2018, October). On the Classification of SSVEP-Based Dry-EEG Signals via Convolutional Neural Networks. Presented at 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC2018), Miyazaki, Japan

Electroencephalography (EEG) is a common signal acquisition approach employed for Brain-Computer Interface (BCI) research. Nevertheless, the majority of EEG acquisition devices rely on the cumbersome application of conductive gel (so-called wet-EEG)... Read More about On the Classification of SSVEP-Based Dry-EEG Signals via Convolutional Neural Networks.