Skip to main content

Research Repository

Advanced Search

Model‐Driven Engineering for Digital Twins: Opportunities and Challenges

Michael, Judith; Cleophas, Loek; Zschaler, Steffen; Clark, Tony; Combemale, Benoit; Godfrey, Thomas; Khelladi, Djamel Eddine; Kulkarni, Vinay; Lehner, Daniel; Rumpe, Bernhard; Wimmer, Manuel; Wortmann, Andreas; Ali, Shaukat; Barn, Balbir; Barosan, Ion; Bencomo, Nelly; Bordeleau, Francis; Grossmann, Georg; Karsai, Gabor; Kopp, Oliver; Mitschang, Bernhard; Muñoz Ariza, Paula; Pierantonio, Alfonso; Polack, Fiona A. C.; Riebisch, Matthias; Schlingloff, Holger; Stumptner, Markus; Vallecillo, Antonio; van den Brand, Mark; Vangheluwe, Hans

Model‐Driven Engineering for Digital Twins: Opportunities and Challenges Thumbnail


Authors

Judith Michael

Loek Cleophas

Steffen Zschaler

Tony Clark

Benoit Combemale

Thomas Godfrey

Djamel Eddine Khelladi

Vinay Kulkarni

Daniel Lehner

Bernhard Rumpe

Manuel Wimmer

Andreas Wortmann

Shaukat Ali

Balbir Barn

Ion Barosan

Francis Bordeleau

Georg Grossmann

Gabor Karsai

Oliver Kopp

Bernhard Mitschang

Paula Muñoz Ariza

Alfonso Pierantonio

Fiona A. C. Polack

Matthias Riebisch

Holger Schlingloff

Markus Stumptner

Antonio Vallecillo

Mark van den Brand

Hans Vangheluwe



Abstract

Digital twins are increasingly used across a wide range of industries. Modeling is a key to digital twin development—both when considering the models which a digital twin maintains of its real‐world complement (“models in digital twin”) and when considering models of the digital twin as a complex (software) system itself. Thus, systematic development and maintenance of these models is a key factor in effective and efficient digital twin development, maintenance, and use. We argue that model‐driven engineering (MDE), a field with almost three decades of research, will be essential for improving the efficiency and reliability of future digital twin development. To do so, we present an overview of the digital twin life cycle, identifying the different types of models that should be used and re‐used at different life cycle stages (including systems engineering models of the actual system, domain‐specific simulation models, models of data processing pipelines, etc.). We highlight some approaches in MDE that can help create and manage these models and present a roadmap for research towards MDE of digital twins.

Citation

Michael, J., Cleophas, L., Zschaler, S., Clark, T., Combemale, B., Godfrey, T., Khelladi, D. E., Kulkarni, V., Lehner, D., Rumpe, B., Wimmer, M., Wortmann, A., Ali, S., Barn, B., Barosan, I., Bencomo, N., Bordeleau, F., Grossmann, G., Karsai, G., Kopp, O., …Vangheluwe, H. (online). Model‐Driven Engineering for Digital Twins: Opportunities and Challenges. Systems Engineering, https://doi.org/10.1002/sys.21815

Journal Article Type Article
Acceptance Date Mar 20, 2025
Online Publication Date Apr 2, 2025
Deposit Date Apr 7, 2025
Publicly Available Date Apr 8, 2025
Journal Systems Engineering
Print ISSN 1098-1241
Electronic ISSN 1520-6858
Publisher Wiley
Peer Reviewed Peer Reviewed
DOI https://doi.org/10.1002/sys.21815
Keywords model‐driven engineering, digital twin, systems engineering, cyber‐physical systems
Public URL https://durham-repository.worktribe.com/output/3780723

Files





You might also like



Downloadable Citations