Fawad Ahmed
Harnessing acoustic energy with liquid metal triboelectric nanogenerators: A promising approach for moving-parts-free power generation
Ahmed, Fawad; Wang, Junxiang; Yang, Rui; Yu, Guoyao; Zhu, Shunmin; Tang, Wei; Luo, Ercang
Authors
Junxiang Wang
Rui Yang
Guoyao Yu
Dr Shunmin Zhu shunmin.zhu@durham.ac.uk
Marie Curie Fellow
Wei Tang
Ercang Luo
Abstract
Heat-driven acoustic engines (HDAEs) offer a promising approach to energy generation without solid moving parts. However, integrating linear alternators for acoustic-to-electric conversion introduces moving components, diminishing this advantage. To tackle this issue, we investigate using an acoustically-driven liquid–metal triboelectric generator (LM-TEG) within HDAEs for acoustic-to-electric conversion. Experiments were conducted in three settings: mechanically-driven LM-TEGs under atmospheric and pressurized gas conditions, and acoustically-driven LM-TEGs. Results from mechanically-driven LM-TEG tests show that using FEP material, increasing LM-TEG contact area, stacking TEGs in parallel, and using pressurized gas enhance performance. Acoustically-driven LM-TEG experiments demonstrate significant improvements with pressurized nitrogen, achieving a short-circuit current approximately 4.5 times higher than with helium at equivalent pressures. Notably, charge and power densities reached 388 μC/m2 and 1.7 W/m2, respectively, surpassing typical values from conventional TEGs. Importantly, these results were obtained with a complete, fully integrated acoustically driven LM-TEG system. This study represents the first investigation in the literature of acoustically driven LM-TEGs, offering a distinct power generation system with no solid moving parts. The findings validate the feasibility of integrating LM-TEGs with HDAEs and suggest their potential for large-scale power generation, moving beyond the small-scale applications that have dominated prior TEG research.
Citation
Ahmed, F., Wang, J., Yang, R., Yu, G., Zhu, S., Tang, W., & Luo, E. (online). Harnessing acoustic energy with liquid metal triboelectric nanogenerators: A promising approach for moving-parts-free power generation. Applied Thermal Engineering, Article 125048. https://doi.org/10.1016/j.applthermaleng.2024.125048
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 21, 2024 |
Online Publication Date | Nov 24, 2024 |
Deposit Date | Nov 25, 2024 |
Publicly Available Date | Nov 27, 2024 |
Journal | Applied Thermal Engineering |
Print ISSN | 1359-4311 |
Electronic ISSN | 1873-5606 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Article Number | 125048 |
DOI | https://doi.org/10.1016/j.applthermaleng.2024.125048 |
Public URL | https://durham-repository.worktribe.com/output/3105388 |
Files
Accepted Journal Article
(2 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This accepted manuscript is licensed under the Creative Commons Attribution 4.0 licence. https://creativecommons.org/licenses/by/4.0/
You might also like
Operating characteristics study of a dual-opposed free-piston Stirling generator
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search