Uzma Malik uzma.malik2@durham.ac.uk
Durham Doctoral Teaching Fellowship
OzDES Reverberation Mapping Program: Stacking analysis with Hβ, Mg ii, and C iv
Malik, U; Sharp, R; Penton, A; Yu, Z; Martini, P; Tucker, B E; Davis, T M; Lewis, G F; Lidman, C; Aguena, M; Alves, O; Annis, J; Asorey, J; Bacon, D; Brooks, D; Carnero Rosell, A; Carretero, J; Cheng, T -Y; da Costa, L N; Pereira, M E S; De Vicente, J; Doel, P; Ferrero, I; Frieman, J; Giannini, G; Gruen, D; Gruendl, R A; Hinton, S R; Hollowood, D L; James, D J; Kuehn, K; Marshall, J L; Mena-Fernández, J; Menanteau, F; Miquel, R; Ogando, R L C; Palmese, A; Pieres, A; Plazas Malagón, A A; Reil, K; Romer, A K; Sanchez, E; Schubnell, M; Smith, M; Suchyta, E; Swanson, M E C; Tarle, G; To, C; Weaverdyck, N; Wiseman, P
Authors
R Sharp
A Penton
Z Yu
P Martini
B E Tucker
T M Davis
G F Lewis
C Lidman
M Aguena
O Alves
J Annis
J Asorey
D Bacon
D Brooks
A Carnero Rosell
J Carretero
Dr Sunny Cheng ting-yun.cheng@durham.ac.uk
Post Doctoral Research Associate
L N da Costa
M E S Pereira
J De Vicente
P Doel
I Ferrero
J Frieman
G Giannini
D Gruen
R A Gruendl
S R Hinton
D L Hollowood
D J James
K Kuehn
J L Marshall
J Mena-Fernández
F Menanteau
R Miquel
R L C Ogando
A Palmese
A Pieres
A A Plazas Malagón
K Reil
A K Romer
E Sanchez
M Schubnell
M Smith
E Suchyta
M E C Swanson
G Tarle
C To
N Weaverdyck
P Wiseman
Abstract
Reverberation mapping is the leading technique used to measure direct black hole masses outside of the local Universe. Additionally, reverberation measurements calibrate secondary mass-scaling relations used to estimate single-epoch virial black hole masses. The Australian Dark Energy Survey (OzDES) conducted one of the first multi-object reverberation mapping surveys, monitoring 735 AGN up to z ∼ 4, over 6 years. The limited temporal coverage of the OzDES data has hindered recovery of individual measurements for some classes of sources, particularly those with shorter reverberation lags or lags that fall within campaign season gaps. To alleviate this limitation, we perform a stacking analysis of the cross-correlation functions of sources with similar intrinsic properties to recover average composite reverberation lags. This analysis leads to the recovery of average lags in each redshift-luminosity bin across our sample. We present the average lags recovered for the Hβ, Mg ii, and C iv samples, as well as multiline measurements for redshift bins where two lines are accessible. The stacking analysis is consistent with the Radius–Luminosity relations for each line. Our results for the Hβ sample demonstrate that stacking has the potential to improve upon constraints on the R–L relation, which have been derived only from individual source measurements until now.
Citation
Malik, U., Sharp, R., Penton, A., Yu, Z., Martini, P., Tucker, B. E., Davis, T. M., Lewis, G. F., Lidman, C., Aguena, M., Alves, O., Annis, J., Asorey, J., Bacon, D., Brooks, D., Carnero Rosell, A., Carretero, J., Cheng, T. .-Y., da Costa, L. N., Pereira, M. E. S., …Wiseman, P. (2024). OzDES Reverberation Mapping Program: Stacking analysis with Hβ, Mg ii, and C iv. Monthly Notices of the Royal Astronomical Society, 531(1), 163-182. https://doi.org/10.1093/mnras/stae1154
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 25, 2024 |
Online Publication Date | May 10, 2024 |
Publication Date | 2024-06 |
Deposit Date | Nov 5, 2024 |
Publicly Available Date | Nov 5, 2024 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 531 |
Issue | 1 |
Pages | 163-182 |
DOI | https://doi.org/10.1093/mnras/stae1154 |
Public URL | https://durham-repository.worktribe.com/output/3082403 |
Files
Published Journal Article
(4.6 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Harvesting the Lyα forest with convolutional neural networks
(2022)
Journal Article
Beyond the hubble sequence – exploring galaxy morphology with unsupervised machine learning
(2021)
Journal Article
Machine Learning methods in Astronomy
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search