Anja Butter
Machine learning and LHC event generation
Butter, Anja; Plehn, Tilman; Schumann, Steffen; Badger, Simon; Caron, Sascha; Cranmer, Kyle; Di Bello, Francesco Armando; Dreyer, Etienne; Forte, Stefano; Ganguly, Sanmay; Gonçalves, Dorival; Gross, Eilam; Heimel, Theo; Heinrich, Gudrun; Heinrich, Lukas; Held, Alexander; Höche, Stefan; Howard, Jessica N.; Ilten, Philip; Isaacson, Joshua; Janßen, Timo; Jones, Stephen; Kado, Marumi; Kagan, Michael; Kasieczka, Gregor; Kling, Felix; Kraml, Sabine; Krause, Claudius; Krauss, Frank; Kröninger, Kevin; Barman, Rahool Kumar; Luchmann, Michel; Magerya, Vitaly; Maitre, Daniel; Malaescu, Bogdan; Maltoni, Fabio; Martini, Till; Mattelaer, Olivier; Nachman, Benjamin; Pitz, Sebastian; Rojo, Juan; Schwartz, Matthew; Shih, David; Siegert, Frank; Stegeman, Roy; Stienen, Bob; Thaler, Jesse; Verheyen, Rob; Whiteson, Daniel; Winterhalder, Ramon; Zupan, Jure
Authors
Tilman Plehn
Steffen Schumann
Dr Simon Badger simon.d.badger@durham.ac.uk
Visiting Professor
Sascha Caron
Kyle Cranmer
Francesco Armando Di Bello
Etienne Dreyer
Stefano Forte
Sanmay Ganguly
Dorival Gonçalves
Eilam Gross
Theo Heimel
Gudrun Heinrich
Lukas Heinrich
Alexander Held
Stefan Höche
Jessica N. Howard
Philip Ilten
Joshua Isaacson
Timo Janßen
Dr Stephen Jones stephen.jones@durham.ac.uk
Associate Professor
Marumi Kado
Michael Kagan
Gregor Kasieczka
Felix Kling
Sabine Kraml
Claudius Krause
Professor Frank Krauss frank.krauss@durham.ac.uk
Professor
Kevin Kröninger
Rahool Kumar Barman
Michel Luchmann
Vitaly Magerya
Professor Daniel Maitre daniel.maitre@durham.ac.uk
Professor
Bogdan Malaescu
Fabio Maltoni
Till Martini
Olivier Mattelaer
Benjamin Nachman
Sebastian Pitz
Juan Rojo
Matthew Schwartz
David Shih
Frank Siegert
Roy Stegeman
Bob Stienen
Jesse Thaler
Rob Verheyen
Daniel Whiteson
Ramon Winterhalder
Jure Zupan
Abstract
First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.
Citation
Butter, A., Plehn, T., Schumann, S., Badger, S., Caron, S., Cranmer, K., …Zupan, J. (2023). Machine learning and LHC event generation. SciPost Physics, 14(4), Article 079. https://doi.org/10.21468/scipostphys.14.4.079
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 9, 2023 |
Online Publication Date | Apr 21, 2023 |
Publication Date | Apr 21, 2023 |
Deposit Date | Feb 19, 2024 |
Publicly Available Date | Feb 19, 2024 |
Journal | SciPost Physics |
Print ISSN | 2542-4653 |
Publisher | SciPost |
Peer Reviewed | Peer Reviewed |
Volume | 14 |
Issue | 4 |
Article Number | 079 |
DOI | https://doi.org/10.21468/scipostphys.14.4.079 |
Keywords | General Physics and Astronomy |
Public URL | https://durham-repository.worktribe.com/output/2269736 |
Files
Published Journal Article
(2.5 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This work is licensed under the Creative Commons
Attribution 4.0 International License.
You might also like
Two-loop amplitudes for ttH¯ production: the quark-initiated Nf -part
(2024)
Journal Article
Two-loop amplitudes for t t ¯ H production: the quark-initiated N f -part
(2024)
Journal Article
Les Houches 2021—physics at TeV colliders: report on the standard model precision wishlist
(2023)
Journal Article
Exclusive J/ψ and ϒ production in high-energy pp and p-Pb collisions
(2022)
Journal Article
ZH production in gluon fusion at NLO in QCD
(2022)
Journal Article