Merryn D. Constable
Enhancing surgical performance in cardiothoracic surgery with innovations from computer vision and artificial intelligence: a narrative review
Constable, Merryn D.; Shum, Hubert P. H.; Clark, Stephen
Abstract
When technical requirements are high, and patient outcomes are critical, opportunities for monitoring and improving surgical skills via objective motion analysis feedback may be particularly beneficial. This narrative review synthesises work on technical and non-technical surgical skills, collaborative task performance, and pose estimation to illustrate new opportunities to advance cardiothoracic surgical performance with innovations from computer vision and artificial intelligence. These technological innovations are critically evaluated in terms of the benefits they could offer the cardiothoracic surgical community, and any barriers to the uptake of the technology are elaborated upon. Like some other specialities, cardiothoracic surgery has relatively few opportunities to benefit from tools with data capture technology embedded within them (as is possible with robotic-assisted laparoscopic surgery, for example). In such cases, pose estimation techniques that allow for movement tracking across a conventional operating field without using specialist equipment or markers offer considerable potential. With video data from either simulated or real surgical procedures, these tools can (1) provide insight into the development of expertise and surgical performance over a surgeon’s career, (2) provide feedback to trainee surgeons regarding areas for improvement, (3) provide the opportunity to investigate what aspects of skill may be linked to patient outcomes which can (4) inform the aspects of surgical skill which should be focused on within training or mentoring programmes. Classifier or assessment algorithms that use artificial intelligence to ‘learn’ what expertise is from expert surgical evaluators could further assist educators in determining if trainees meet competency thresholds. With collaborative efforts between surgical teams, medical institutions, computer scientists and researchers to ensure this technology is developed with usability and ethics in mind, the developed feedback tools could improve cardiothoracic surgical practice in a data-driven way.
Citation
Constable, M. D., Shum, H. P. H., & Clark, S. (2024). Enhancing surgical performance in cardiothoracic surgery with innovations from computer vision and artificial intelligence: a narrative review. Journal of Cardiothoracic Surgery, 19(1), Article 94. https://doi.org/10.1186/s13019-024-02558-5
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 30, 2024 |
Online Publication Date | Feb 14, 2024 |
Publication Date | 2024-02 |
Deposit Date | Feb 21, 2024 |
Publicly Available Date | Feb 21, 2024 |
Journal | Journal of Cardiothoracic Surgery |
Electronic ISSN | 1749-8090 |
Publisher | BioMed Central |
Peer Reviewed | Peer Reviewed |
Volume | 19 |
Issue | 1 |
Article Number | 94 |
DOI | https://doi.org/10.1186/s13019-024-02558-5 |
Keywords | Psychomotor ability, Surgical expertise, Surgical skills, Markerless motion tracking, Surgical performance, Surgical education, Surgical kinematics, Surgical training, Deep learning, Pose estimation |
Public URL | https://durham-repository.worktribe.com/output/2258104 |
Files
Published Journal Article
(1 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
One-Index Vector Quantization Based Adversarial Attack on Image Classification
(2024)
Journal Article
Geometric Features Enhanced Human-Object Interaction Detection
(2024)
Journal Article
HINT: High-quality INpainting Transformer with Mask-Aware Encoding and Enhanced Attention
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search