Maria Naranjo-Arcos
SUMO/deSUMOylation of the BRI1 brassinosteroid receptor modulates plant growth responses to temperature
Naranjo-Arcos, Maria; Srivastava, Moumita; Deligne, Florian; Bhagat, Prakash Kumar; Mansi, Mansi; Sadanandom, Ari; Vert, Grégory
Authors
Moumita Srivastava
Florian Deligne
Prakash Kumar Bhagat
Mansi Mansi
Professor Ari Sadanandom ari.sadanandom@durham.ac.uk
Professor
Grégory Vert
Abstract
Brassinosteroids (BRs) are a class of steroid molecules perceived at the cell surface that act as plant hormones. The BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) offers a model to understand receptor-mediated signaling in plants and the role of post-translational modifications. Here we identify SUMOylation as a new modification targeting BRI1 to regulate its activity. BRI1 is SUMOylated in planta on two lysine residues, and the levels of BRI1 SUMO conjugates are controlled by the Desi3a SUMO protease. Loss of Desi3a leads to hypersensitivity to BRs, indicating that Desi3a acts as a negative regulator of BR signaling. Besides, we demonstrate that BRI1 is deSUMOylated at elevated temperature by Desi3a, leading to increased BRI1 interaction with the negative regulator of BR signaling BIK1 and to enhanced BRI1 endocytosis. Loss of Desi3a or BIK1 results in increased response to temperature elevation, indicating that BRI1 deSUMOylation acts as a safety mechanism necessary to keep temperature responses in check. Altogether, our work establishes BRI1 deSUMOylation as a molecular crosstalk mechanism between temperature and BR signaling, allowing plants to translate environmental inputs into growth response.
Citation
Naranjo-Arcos, M., Srivastava, M., Deligne, F., Bhagat, P. K., Mansi, M., Sadanandom, A., & Vert, G. (2023). SUMO/deSUMOylation of the BRI1 brassinosteroid receptor modulates plant growth responses to temperature. Proceedings of the National Academy of Sciences, 120(4), Article 2217255120. https://doi.org/10.1073/pnas.2217255120
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 16, 2022 |
Online Publication Date | Jan 18, 2023 |
Publication Date | Jan 24, 2023 |
Deposit Date | Jan 23, 2024 |
Publicly Available Date | Jan 23, 2024 |
Journal | Proceedings of the National Academy of Sciences |
Print ISSN | 0027-8424 |
Electronic ISSN | 1091-6490 |
Publisher | National Academy of Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 120 |
Issue | 4 |
Article Number | 2217255120 |
DOI | https://doi.org/10.1073/pnas.2217255120 |
Public URL | https://durham-repository.worktribe.com/output/2161933 |
Files
Published Journal Article
(3 Mb)
PDF
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
Copyright © 2023 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
You might also like
Towards understanding the multifaceted role of SUMOylation in plant growth and development
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search