Skip to main content

Research Repository

Advanced Search

Ge and Si isotope signatures in rivers: A quantitative multi-proxy approach

Baronas, J. Jotautas; Torres, Mark A.; West, A. Joshua; Rouxel, Olivier; Georg, Bastian; Bouchez, Julien; Gaillardet, Jérôme; Hammond, Douglas E.

Authors

Mark A. Torres

A. Joshua West

Olivier Rouxel

Bastian Georg

Julien Bouchez

Jérôme Gaillardet

Douglas E. Hammond



Abstract

Solutes derived from the dissolution of silicate minerals play a key role in Earth's climate via the carbon and other biogeochemical cycles. Silicon (Si) is a unique constituent of silicate minerals and a biologically important nutrient, so tracing its behavior in near-surface environments may provide important insights into weathering processes. However, Si released by weathering is variably incorporated into secondary mineral phases and biota, obscuring signals derived from primary weathering processes. Due to chemical similarities, Germanium (Ge) may help better understand the Si cycle and its relationship to chemical weathering. With this aim, we report new measurements of the concentration and isotopic composition of Ge for both the dissolved and particulate phases of a variety of global rivers. These measurements are combined with analyses of concentration and isotopic ratio of Si on the exact same sample set in order to make direct comparisons of the behavior of these two elements in natural river systems. With this dataset, we develop a new modeling framework describing the full elemental and isotopic systems of these solutes in rivers (i.e., Ge/Si, δ30Si, and δ74Ge). This multi-proxy approach allows us to ascertain the relative importance of biological versus mineral uptake in modulating the fluxes of these elements delivered to the modern ocean.

Dissolved δ74Ge composition of rivers studied thus far range from 0.9 to 5.5‰ with a discharge-weighted global average of 2.6 ± 0.5‰. The Ge isotope composition of riverine suspended and bedload sediments is indistinguishable from silicate source rocks, which is consistent with mass balance expectations. The multi-proxy modeling suggests that, among the watersheds studied here, the isotopic fractionation of Si during secondary mineral phase precipitation (Δ30Si) ranges from −2.7 to −0.2‰, which removes between 19–79% of the initial dissolved Si, while between 12–54% is incorporated by biota. For Ge, modeling indicates that 79–98% of the dissolved load is incorporated into secondary mineral phases with a Δ74Ge ranging from −4.9 to −0.3‰. The fractionation induced by biological uptake is calculated to range from −2.6 to −1.3‰ for Δ30Si and −0.7 ± 0.7‰ for Δ74Ge. In addition to improving our understanding of the coupled Ge and Si cycles, our study provides a framework for using multiple isotopic tracers to elucidate the chemical behavior of solutes in natural waters.

Citation

Baronas, J. J., Torres, M. A., West, A. J., Rouxel, O., Georg, B., Bouchez, J., …Hammond, D. E. (2018). Ge and Si isotope signatures in rivers: A quantitative multi-proxy approach. Earth and Planetary Science Letters, 503, 194-215. https://doi.org/10.1016/j.epsl.2018.09.022

Journal Article Type Article
Acceptance Date Sep 14, 2018
Online Publication Date Oct 9, 2018
Publication Date Dec 1, 2018
Deposit Date Dec 18, 2023
Journal Earth and Planetary Science Letters
Print ISSN 0012-821X
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 503
Pages 194-215
DOI https://doi.org/10.1016/j.epsl.2018.09.022
Keywords Space and Planetary Science; Earth and Planetary Sciences (miscellaneous); Geochemistry and Petrology; Geophysics
Public URL https://durham-repository.worktribe.com/output/2047346