Skip to main content

Research Repository

Advanced Search

Near-Miss Bi-Homogenous Symmetric Polyhedral Cages

Piette, Bernard; Lukács, Árpad

Authors



Abstract

Following the discovery of an artificial protein cage with a paradoxical geometry, we extend the concept of homogeneous symmetric congruent equivalent near-miss polyhedral cages, for which all the faces are equivalent, and define bi-homogeneous symmetric polyhedral cages made of two different types of faces, where all the faces of a given type are equivalent. We parametrise the possible connectivity configurations for such cages, analytically derive p-cages that are regular, and numerically compute near-symmetric p-cages made of polygons with 6 to 18 edges and with deformation not exceeding 10%.

Citation

Piette, B., & Lukács, Á. (2023). Near-Miss Bi-Homogenous Symmetric Polyhedral Cages. Symmetry, 15(9), Article 1804. https://doi.org/10.3390/sym15091804

Journal Article Type Article
Acceptance Date Sep 13, 2023
Online Publication Date Sep 21, 2023
Publication Date 2023-09
Deposit Date Oct 18, 2023
Publicly Available Date Oct 18, 2023
Journal Symmetry
Electronic ISSN 2073-8994
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 15
Issue 9
Article Number 1804
DOI https://doi.org/10.3390/sym15091804
Keywords Cayley graph, nanoparticle, uniform polyhedra, polyhedral cages, platonic group, protein cage, nanocage, near-miss cages
Public URL https://durham-repository.worktribe.com/output/1797862

Files





You might also like



Downloadable Citations