Skip to main content

Research Repository

Advanced Search

Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains

Antonietti, P.F.; Cangiani, A.; Collis, J.; Dong, Z.; Georgoulis, E.H.; Giani, S.; Houston, P.

Authors

P.F. Antonietti

A. Cangiani

J. Collis

Z. Dong

E.H. Georgoulis

P. Houston



Contributors

G.R. Barrenechea
Editor

F. Brezzi
Editor

A. Cangiani
Editor

E.H. Georgoulis
Editor

Abstract

The numerical approximation of partial differential equations (PDEs) posed on complicated geometries, which include a large number of small geometrical features or microstructures, represents a challenging computational problem. Indeed, the use of standard mesh generators, employing simplices or tensor product elements, for example, naturally leads to very fine finite element meshes, and hence the computational effort required to numerically approximate the underlying PDE problem may be prohibitively expensive. As an alternative approach, in this article we present a review of composite/agglomerated discontinuous Galerkin finite element methods (DGFEMs) which employ general polytopic elements. Here, the elements are typically constructed as the union of standard element shapes; in this way, the minimal dimension of the underlying composite finite element space is independent of the number of geometrical features. In particular, we provide an overview of hp-version inverse estimates and approximation results for general polytopic elements, which are sharp with respect to element facet degeneration. On the basis of these results, a priori error bounds for the hp-DGFEM approximation of both second-order elliptic and first-order hyperbolic PDEs will be derived. Finally, we present numerical experiments which highlight the practical application of DGFEMs on meshes consisting of general polytopic elements.

Citation

Antonietti, P., Cangiani, A., Collis, J., Dong, Z., Georgoulis, E., Giani, S., & Houston, P. (2016). Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains. In G. Barrenechea, F. Brezzi, A. Cangiani, & E. Georgoulis (Eds.), Building bridges : connections and challenges in modern approaches to numerical partial differential equations (279-308). Springer Verlag. https://doi.org/10.1007/978-3-319-41640-3_9

Online Publication Date Oct 4, 2016
Publication Date Oct 4, 2016
Deposit Date May 31, 2016
Publisher Springer Verlag
Pages 279-308
Series Title Lecture notes in computational science and engineering
Book Title Building bridges : connections and challenges in modern approaches to numerical partial differential equations.
ISBN 9783319416380
DOI https://doi.org/10.1007/978-3-319-41640-3_9
Public URL https://durham-repository.worktribe.com/output/1671816
Contract Date Jan 13, 2016


You might also like



Downloadable Citations