P.F. Antonietti
Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains
Antonietti, P.F.; Cangiani, A.; Collis, J.; Dong, Z.; Georgoulis, E.H.; Giani, S.; Houston, P.
Authors
A. Cangiani
J. Collis
Z. Dong
E.H. Georgoulis
Dr Stefano Giani stefano.giani@durham.ac.uk
Associate Professor
P. Houston
Contributors
G.R. Barrenechea
Editor
F. Brezzi
Editor
A. Cangiani
Editor
E.H. Georgoulis
Editor
Abstract
The numerical approximation of partial differential equations (PDEs) posed on complicated geometries, which include a large number of small geometrical features or microstructures, represents a challenging computational problem. Indeed, the use of standard mesh generators, employing simplices or tensor product elements, for example, naturally leads to very fine finite element meshes, and hence the computational effort required to numerically approximate the underlying PDE problem may be prohibitively expensive. As an alternative approach, in this article we present a review of composite/agglomerated discontinuous Galerkin finite element methods (DGFEMs) which employ general polytopic elements. Here, the elements are typically constructed as the union of standard element shapes; in this way, the minimal dimension of the underlying composite finite element space is independent of the number of geometrical features. In particular, we provide an overview of hp-version inverse estimates and approximation results for general polytopic elements, which are sharp with respect to element facet degeneration. On the basis of these results, a priori error bounds for the hp-DGFEM approximation of both second-order elliptic and first-order hyperbolic PDEs will be derived. Finally, we present numerical experiments which highlight the practical application of DGFEMs on meshes consisting of general polytopic elements.
Citation
Antonietti, P., Cangiani, A., Collis, J., Dong, Z., Georgoulis, E., Giani, S., & Houston, P. (2016). Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains. In G. Barrenechea, F. Brezzi, A. Cangiani, & E. Georgoulis (Eds.), Building bridges : connections and challenges in modern approaches to numerical partial differential equations (279-308). Springer Verlag. https://doi.org/10.1007/978-3-319-41640-3_9
Online Publication Date | Oct 4, 2016 |
---|---|
Publication Date | Oct 4, 2016 |
Deposit Date | May 31, 2016 |
Publisher | Springer Verlag |
Pages | 279-308 |
Series Title | Lecture notes in computational science and engineering |
Book Title | Building bridges : connections and challenges in modern approaches to numerical partial differential equations. |
ISBN | 9783319416380 |
DOI | https://doi.org/10.1007/978-3-319-41640-3_9 |
Public URL | https://durham-repository.worktribe.com/output/1671816 |
Contract Date | Jan 13, 2016 |
You might also like
Enhancing lecture capture with deep learning
(2024)
Journal Article
UKACM Proceedings 2024
(2024)
Presentation / Conference Contribution
Modelling Fracture Behaviour in Fibre-Hybrid 3D Woven Composites
(2024)
Presentation / Conference Contribution
Immersed traction boundary conditions in phase field fracture modelling
(2024)
Presentation / Conference Contribution
Recursive autoencoder network for prediction of CAD model parameters from STEP files
(2024)
Presentation / Conference Contribution
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search