Professor John Hunton john.hunton@durham.ac.uk
Professor
Professor John Hunton john.hunton@durham.ac.uk
Professor
J. Kellendonk
Editor
D. Lenz
Editor
J. Savinien
Editor
We explain from the basics why the Čech cohomology of a tiling space can be realised in terms of group cohomology, and use this to explain how to compute the cohomology of a projection pattern.
Hunton, J. (2015). Spaces of Projection Method Patterns and their Cohomology. In J. Kellendonk, D. Lenz, & J. Savinien (Eds.), Mathematics of aperiodic order (105-135). Birkhäuser Verlag. https://doi.org/10.1007/978-3-0348-0903-0_4
Online Publication Date | Jul 30, 2015 |
---|---|
Publication Date | Jul 14, 2015 |
Deposit Date | Feb 11, 2015 |
Publisher | Birkhäuser Verlag |
Pages | 105-135 |
Series Title | Progress in mathematics |
Edition | 1st |
Book Title | Mathematics of aperiodic order. |
ISBN | 9783034809023 |
DOI | https://doi.org/10.1007/978-3-0348-0903-0_4 |
Keywords | Aperiodic patterns, Cut and project, Model sets, Cohomology, Tilings, Cantor bundles. |
Public URL | https://durham-repository.worktribe.com/output/1671162 |
Additional Information | Series: Progress in Mathematics, vol.309 |
Contract Date | Nov 25, 2014 |
Aperiodicity, rotational tiling spaces and topological space groups
(2021)
Journal Article
Chaotic Delone Sets
(2021)
Journal Article
The homology core of matchbox manifolds and invariant measures
(2018)
Journal Article
Topological Invariants for Tilings
(2017)
Presentation / Conference Contribution
Integral cohomology of rational projection method patterns
(2013)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search