Professor Charles Augarde charles.augarde@durham.ac.uk
Head Of Department
Numerical models in soft ground tunnelling
Augarde, C.E.
Authors
Contributors
B.H.V. Topping
Editor
Abstract
Numerical modelling has been used for a number of years for problems relating to soft-ground tunnelling (i.e. where the ground being excavated is not rock). Three problems require solutions in soft ground tunnelling. Firstly the effects tunnelling will have on the surroundings are determined. Secondly, the stability of the works during and after construction must be assessed. The third problem is the design of the tunnel permanent lining. This chapter will cover aspects of the first two problems only. The first problem, that of determining the effects of tunnelling, is a major area of interest in the UK and elsewhere. The motivation is the increasing number of new tunnels proposed for urban areas. Installation of a tunnel in soft ground inevitably leads to movement of the surface above, particularly if the tunnel is shallow (i.e. having a depth of cover up to 30m). Semi-empirical techniques have been developed in the past to predict these movements. However, these methods have the drawback that they cannot adequately deal with the presence of structures on the surface which themselves change the movement pattern due to their stiffness and weight. Recent research has led to the development of models that include more accurate modelling of soil behaviour, particularly for clays, and simulation of modern tunnelling techniques such as sprayed concrete lining. Some of this recent modelling is reviewed here. Assessing stability is commonly approached using analytical approaches, which have been developed from empirical rules, or through the use of plasticity approaches. Of more interest to computational researchers are quasi-finite element techniques also based on classical plasticity. The use of these methods on collapse problems in tunnelling by the author is demonstrated in this chapter.
Citation
Augarde, C. (2003). Numerical models in soft ground tunnelling. In B. Topping (Ed.), Progress in civil and structural engineering computing (285-314). Saxe-Coburg
Publication Date | Jan 1, 2003 |
---|---|
Deposit Date | Sep 24, 2008 |
Pages | 285-314 |
Book Title | Progress in civil and structural engineering computing. |
Chapter Number | 11 |
ISBN | 18746721998 |
Keywords | Numerical modelling, Soft ground tunnelling. |
Public URL | https://durham-repository.worktribe.com/output/1669196 |
Publisher URL | http://www.saxe-coburg.co.uk/pubs/contents/sl03_11.htm |
You might also like
Simulation of strain localisation with an elastoplastic micropolar material point method
(2024)
Presentation / Conference Contribution
Consequences of Terzaghi’s effective stress decomposition in the context of finite strain poro-mechanics
(2024)
Presentation / Conference Contribution
Dynamic three-dimensional rigid body interaction with highly deformable solids, a material point approach
(2024)
Presentation / Conference Contribution
On the implementation of a material point‐based arc‐length method
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search