Professor Herbert Gangl herbert.gangl@durham.ac.uk
Professor
P. Cartier
Editor
B. Julia
Editor
P. Moussa
Editor
P. Vanhove
Editor
The differential properties of multiple logarithms and those of corresponding algebraic cycles are related to the combinatorics of certain trees.
Gangl, H., Goncharov, A., & Levin, A. (2007). Multiple logarithms, trees and algebraic cycles. In P. Cartier, B. Julia, P. Moussa, & P. Vanhove (Eds.), Frontiers in Number Theory, Physics and Geometry II (759-774). (New ed.). Springer Verlag
Publication Date | 2007 |
---|---|
Publisher | Springer Verlag |
Pages | 759-774 |
Series Number | II |
Edition | New ed. |
Book Title | Frontiers in Number Theory, Physics and Geometry II |
Chapter Number | 16 |
Public URL | https://durham-repository.worktribe.com/output/1666517 |
On the Cohomology of GL2 and SL2 over Imaginary Quadratic Fields
(2024)
Journal Article
On the Goncharov depth conjecture and polylogarithms of depth two
(2024)
Journal Article
Functional equations of polygonal type for multiple polylogarithms in weights 5, 6 and 7
(2023)
Journal Article
On two conjectures of Sun concerning Apéry-like series
(2023)
Journal Article
On functional equations for Nielsen polylogarithms
(2021)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search