S. Felsner
Intersection Graphs of L-Shapes and Segments in the Plane
Felsner, S.; Knauer, K.; Mertzios, G.B.; Ueckerdt, T.
Authors
Contributors
Erzsébet Csuhaj-Varjú
Editor
Martin Dietzfelbinger
Editor
Zoltán Ésik
Editor
Abstract
An L-shape is the union of a horizontal and a vertical segment with a common endpoint. These come in four rotations: ⌊,⌈,⌋ and ⌉. A k-bend path is a simple path in the plane, whose direction changes k times from horizontal to vertical. If a graph admits an intersection representation in which every vertex is represented by an ⌊, an ⌊ or ⌈, a k-bend path, or a segment, then this graph is called an ⌊-graph, ⌊,⌈-graph, B k -VPG-graph or SEG-graph, respectively. Motivated by a theorem of Middendorf and Pfeiffer [Discrete Mathematics, 108(1):365–372, 1992], stating that every ⌊,⌈-graph is a SEG-graph, we investigate several known subclasses of SEG-graphs and show that they are ⌊-graphs, or B k -VPG-graphs for some small constant k. We show that all planar 3-trees, all line graphs of planar graphs, and all full subdivisions of planar graphs are ⌊-graphs. Furthermore we show that all complements of planar graphs are B 19-VPG-graphs and all complements of full subdivisions are B 2-VPG-graphs. Here a full subdivision is a graph in which each edge is subdivided at least once.
Citation
Felsner, S., Knauer, K., Mertzios, G., & Ueckerdt, T. (2014). Intersection Graphs of L-Shapes and Segments in the Plane. In E. Csuhaj-Varjú, M. Dietzfelbinger, & Z. Ésik (Eds.), Mathematical foundations of computer science 2014 : 39th international symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, part II (299-310). Springer Verlag. https://doi.org/10.1007/978-3-662-44465-8_26
Publication Date | 2014 |
---|---|
Deposit Date | Sep 8, 2014 |
Publicly Available Date | Sep 17, 2014 |
Publisher | Springer Verlag |
Pages | 299-310 |
Series Title | Lecture notes in computer science |
Book Title | Mathematical foundations of computer science 2014 : 39th international symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, part II. |
ISBN | 9783662444641 |
DOI | https://doi.org/10.1007/978-3-662-44465-8_26 |
Keywords | Intersection graphs, Segment graphs, Co-planar graphs, k-bend VPG-graphs, Planar 3-trees. |
Public URL | https://durham-repository.worktribe.com/output/1648218 |
Related Public URLs | http://link.springer.com/chapter/10.1007/978-3-662-44465-8_26 |
Files
Accepted Book Chapter
(352 Kb)
PDF
Copyright Statement
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-662-44465-8_26
You might also like
The complexity of computing optimum labelings for temporal connectivity
(2022)
Presentation / Conference Contribution
The complexity of temporal vertex cover in small-degree graphs
(2022)
Presentation / Conference Contribution
The complexity of transitively orienting temporal graphs
(2021)
Presentation / Conference Contribution
Equitable scheduling on a single machine
(2021)
Presentation / Conference Contribution
Exact and approximate algorithms for computing a second Hamiltonian cycle
(2020)
Presentation / Conference Contribution
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search