Dr Emma McCabe emma.mccabe@durham.ac.uk
Associate Professor
Materials that exhibit a macroscopic polarization are key for a range of applications but the origin of this polarization differs between materials families. Scientists strive to understand the microscopic origins of physical properties: the inorganic chemist can apply their understanding of ionic systems and crystal chemistry to design new polar materials. This chapter gives an overview of a range of strategies to design inorganic, polar materials (including electronic factors and geometric factors, as well as cation-order, anion-order and magnetic ordering) and an introduction to the symmetry requirements and background theory used to describe these materials.
McCabe, E. E. (2022). Designing new polar materials. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/b978-0-12-823144-9.00080-7
Online Publication Date | Jan 29, 2022 |
---|---|
Publication Date | 2022 |
Deposit Date | Jan 31, 2022 |
Publisher | Elsevier |
Book Title | Reference Module in Chemistry, Molecular Sciences and Chemical Engineering |
DOI | https://doi.org/10.1016/b978-0-12-823144-9.00080-7 |
Public URL | https://durham-repository.worktribe.com/output/1646172 |
Iron Oxychalcogenides and Their Photocurrent Responses.
(2024)
Journal Article
Bi2CoO2F4 – a polar, ferrimagnetic Aurivillius oxide-fluoride
(2022)
Journal Article
Joint machine learning analysis of muon spectroscopy data from different materials
(2022)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search