R.G. Lloyd
Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli.
Lloyd, R.G.; Sharples, G.J.
Abstract
The RuvAB, RuvC and RecG proteins of Escherichia coli process intermediates in recombination and DNA repair into mature products. RuvAB and RecG catalyse branch migration of Holliday junctions, while RuvC resolves these structures by nuclease cleavage around the point of strand exchange. The overlap between RuvAB and RecG was investigated using synthetic X- and Y-junctions. RuvAB is a complex of RuvA and RuvB, with RuvA providing the DNA binding subunit and RuvB the ATPase activity that drives branch migration. Both RuvA and RecG form defined complexes with each of the junctions. The gel mobilities of these complexes suggests that the X-junction attracts two tetramers of RuvA, but mainly monomers of RecG. Dissociation of the junction in the presence of ATP requires high levels of RuvAB. RecG is shown to have a much higher specific activity to the extent that very little of this protein would be required to match RuvAB in vivo. Both proteins also dissociate a Y-junction, which is consistent with helicase activity. However, RecG shows no ability to unwind more conventional substrates and the suggestion is made that its helicase activity is directed towards specific DNA structures such as junctions.
Citation
Lloyd, R., & Sharples, G. (1993). Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli. Nucleic Acids Research, 21(8), 1719-1725
Journal Article Type | Article |
---|---|
Publication Date | 1993 |
Journal | Nucleic Acids Research |
Print ISSN | 0305-1048 |
Electronic ISSN | 1362-4962 |
Publisher | Oxford University Press |
Volume | 21 |
Issue | 8 |
Pages | 1719-1725 |
Public URL | https://durham-repository.worktribe.com/output/1592166 |
Publisher URL | http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8388095 |
You might also like
Antibacterial mechanism of Malaysian Carey clay against food-borne Staphylococcus aureus
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search