L. Ryder
Recombination-dependent growth in exonuclease-depleted recBC sbcBC strains of Escherichia coli K-12.
Ryder, L.; Sharples, G.J.; Lloyd, R.G.
Abstract
Analysis of the aroLM-sbcCD interval of the Escherichia coli K-12 chromosome revealed a new gene (rdgC) encoding a function required for growth in recombination-deficient recBC sbcBC strains. Deletion of rdgC does not reduce viability, conjugational recombination, or DNA repair in rec+, recA, recB, recF, or recJ mutants. However, it makes the growth of recBC sbcBC strains reliant on the RecA, RecF, and RuvC proteins and, to a large extent, on RuvAB. The recBC sbcBC delta rdgC ruvAB construct forms colonies, but cell viability is reduced to < 5%. A recBC sbcBC delta rdgC derivative carrying the temperature-sensitive recA200 allele grows at 32 degrees but not 42 degrees. Multicopy rdgC+ plasmids reduce the growth rate of recBC sbcBC strains, while multicopy sbcC+ plasmids that reactivate SbcCD nuclease cannot be maintained without RdgC protein. The data presented are interpreted to suggest that exonuclease-depleted recBC sbcBC strains have difficulty removing the displaced arm of a collapsed replication fork and that this problem is compounded in the absence of RdgC. Recombination then becomes necessary to repair the fork and allow chromosome duplication to be completed. The possibility that RdgC is an exonuclease is discussed.
Citation
Ryder, L., Sharples, G., & Lloyd, R. (1996). Recombination-dependent growth in exonuclease-depleted recBC sbcBC strains of Escherichia coli K-12. Genetics, 143(3), 1101-1114
Journal Article Type | Article |
---|---|
Publication Date | 1996 |
Journal | Genetics |
Print ISSN | 0016-6731 |
Electronic ISSN | 1943-2631 |
Publisher | Genetics Society of America |
Volume | 143 |
Issue | 3 |
Pages | 1101-1114 |
Public URL | https://durham-repository.worktribe.com/output/1592111 |
Publisher URL | http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8807285 |
You might also like
Antibacterial mechanism of Malaysian Carey clay against food-borne Staphylococcus aureus
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search