E.L. Bolt
Genetic analysis of an archaeal Holliday junction resolvase in Escherichia coli.
Bolt, E.L.; Lloyd, R.G.; Sharples, G.J.
Abstract
The study of genes and proteins in heterologous model systems provides a powerful approach to the analysis of common processes in biology. Here, we show how the bacterium Escherichia coli can be exploited to analyse genetically and biochemically the activity and function of a Holliday junction resolving enzyme from an archaeal species. We have purified and characterised a member of the newly discovered Holliday junction cleaving (Hjc) family of resolvases from the moderately thermophilic archaeon Methanobacterium thermoautotrophicum and demonstrate that it promotes DNA repair in resolvase-deficient ruv mutants of E. coli. The data presented provide the first direct evidence that such archaeal enzymes can promote DNA repair in vivo, and support the view that formation and resolution of Holliday junctions are key to the interplay between DNA replication, recombination and repair in all organisms. We also show that Hjc promotes DNA repair in E. coli in a manner that requires the presence of the RecG branch migration protein. These results support models in which RecG acts at a replication fork stalled at a lesion in the DNA, catalysing fork regression and forming a Holliday junction that can then be acted upon by Hjc.
Citation
Bolt, E., Lloyd, R., & Sharples, G. (2001). Genetic analysis of an archaeal Holliday junction resolvase in Escherichia coli. Journal of Molecular Biology, 310(3), 577-589
Journal Article Type | Article |
---|---|
Publication Date | 2001 |
Journal | Journal of Molecular Biology |
Print ISSN | 0022-2836 |
Publisher | Elsevier |
Volume | 310 |
Issue | 3 |
Pages | 577-589 |
Public URL | https://durham-repository.worktribe.com/output/1592032 |
Publisher URL | http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11439025 |
You might also like
Antibacterial mechanism of Malaysian Carey clay against food-borne Staphylococcus aureus
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search