Professor Victor Abrashkin victor.abrashkin@durham.ac.uk
Professor
The principal result of this paper is an explicit description of the structure of ramification subgroups of the Galois group of 2-dimensional local field modulo its subgroup of commutators of order 3. This result plays a clue role in the author's proof of an analogue of the Grothendieck Conjecture for higher dimensional local fields, cf. Proc. Steklov Math. Institute, vol. 241, 2003, pp. 2-34.
Abrashkin, V. (2004). Towards explicit description of the ramification filtration in the 2-dimensional case. Journal de théorie des nombres de Bordeaux, 16(2), 293-333
Journal Article Type | Article |
---|---|
Publication Date | 2004 |
Deposit Date | Feb 22, 2008 |
Journal | Journal de théorie des nombres de Bordeaux |
Print ISSN | 1246-7405 |
Electronic ISSN | 2118-8572 |
Publisher | Institut Mathematiques de Bordeaux |
Peer Reviewed | Peer Reviewed |
Volume | 16 |
Issue | 2 |
Pages | 293-333 |
Public URL | https://durham-repository.worktribe.com/output/1591522 |
Publisher URL | http://almira.math.u-bordeaux1.fr/jtnb/2004-2/jtnb16-2_english.html#jourelec |
Galois groups of p-extensions of higher local fields
(2024)
Journal Article
Ramification Filtration and Differential Forms
(2022)
Journal Article
Ramification filtration via deformations
(2021)
Journal Article
Groups of automorphisms of local fields of period p and nilpotent class < p, II
(2017)
Journal Article
Groups of automorphisms of local fields of period p and nilpotent class < p, I
(2017)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search