T.N. Mandal
Resolution of Holliday intermediates in recombination and DNA repair: indirect suppression of ruvA, ruvB, and ruvC mutations.
Mandal, T.N.; Mahdi, A.A.; Sharples, G.J.; Lloyd, R.G.
Abstract
The ruvA, ruvB, and ruvC genes of Escherichia coli provide activities that catalyze branch migration and resolution of Holliday junction intermediates in recombination. Mutation of any one of these genes interferes with recombination and reduces the ability of the cell to repair damage to DNA. A suppressor of ruv mutations was identified on the basis of its ability to restore resistance to mitomycin and UV light and to allow normal levels of recombination in a recBC sbcBC strain carrying a Tn10 insertion in ruvA. The mutation responsible was located at 12.5 min on the genetic map and defines a new locus which has been designated rus. The rus suppressor works just as well in recBC sbcA and rec+ sbc+ backgrounds and is not allele specific. Mutations in ruvB and ruvC are suppressed to an intermediate level, except when ruvA is also inactive, in which case suppression is complete. In all cases, suppression depends on RecG protein, a DNA-dependent ATPase that catalyzes branch migration of Holliday junctions. The rus mutation activates an additional factor that probably works with RecG to process Holliday junction intermediates independently of the RuvAB and RuvC proteins. The possibility that this additional factor is a junction-specific resolvase is discussed.
Citation
Mandal, T., Mahdi, A., Sharples, G., & Lloyd, R. (1993). Resolution of Holliday intermediates in recombination and DNA repair: indirect suppression of ruvA, ruvB, and ruvC mutations. Journal of Bacteriology, 175(14), 4325-4334
Journal Article Type | Article |
---|---|
Publication Date | 1993 |
Journal | Journal of Bacteriology |
Print ISSN | 0021-9193 |
Electronic ISSN | 1098-5530 |
Publisher | American Society for Microbiology |
Volume | 175 |
Issue | 14 |
Pages | 4325-4334 |
Public URL | https://durham-repository.worktribe.com/output/1583622 |
Publisher URL | http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8331065 |
You might also like
Antibacterial mechanism of Malaysian Carey clay against food-borne Staphylococcus aureus
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search