Dr Gary Sharples gary.sharples@durham.ac.uk
Associate Professor
Resolution of Holliday junctions in Escherichia coli: identification of the ruvC gene product as a 19-kilodalton protein.
Sharples, G.J.; Lloyd, R.G.
Authors
R.G. Lloyd
Abstract
The ruvC gene of Escherichia coli specifies a nuclease that resolves Holliday junction intermediates in genetic recombination (B. Connolly, C.A. Parsons, F.E. Benson, H.J. Dunderdale, G.J. Sharples, R.G. Lloyd, and S.C. West, Proc. Natl. Acad, Sci. USA 88:6063-6067, 1991). The gene was located between aspS and the ruvAB operon by DNA sequencing and deletion analysis of ruvC plasmids and was shown to encode a protein of 18,747 Da. Analysis of the DNA flanking ruvC indicated that the gene is transcribed independently of the LexA-regulated ruvAB operon and is not under direct SOS control. ruvC lies downstream of an open reading frame, orf-33, for a protein which migrates during sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 33-kDa polypeptide. These two genes probably form an operon. However, expression of ruvC was found to be very poor relative to that of orf-33. A double ribosomal frameshift between these genes is proposed as a possible reason for the low level of RuvC. Two further open reading frames of unknown function were identified, one on either side of the orf-33-ruvC operon.
Citation
Sharples, G., & Lloyd, R. (1991). Resolution of Holliday junctions in Escherichia coli: identification of the ruvC gene product as a 19-kilodalton protein. Journal of Bacteriology, 173(23), 7711-7715
Journal Article Type | Article |
---|---|
Publication Date | 1991 |
Journal | Journal of Bacteriology |
Print ISSN | 0021-9193 |
Electronic ISSN | 1098-5530 |
Publisher | American Society for Microbiology |
Volume | 173 |
Issue | 23 |
Pages | 7711-7715 |
Public URL | https://durham-repository.worktribe.com/output/1559586 |
Publisher URL | http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1657895 |
You might also like
Antibacterial mechanism of Malaysian Carey clay against food-borne Staphylococcus aureus
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search