L Armstrong
A role for nucleoprotein Zap3 in the reduction of telomerase activity during embryonic stem cell differentiation
Armstrong, L; Lako, M; van Herpe, I; Evans, J; Saretzki, G; Hole, N.
Authors
M Lako
I van Herpe
J Evans
G Saretzki
N. Hole
Abstract
Telomerase, the enzyme which maintains the ends of linear chromosomes in eukaryotic cells is found in murine embryonic stem cells; however, its activity is downregulated during in vitro differentiation. Previous work has indicated that this is due to the transcriptional downregulation of murine reverse transcriptase unit (mTert) of telomerase. To investigate the factors that cause the transcriptional repression of mTert we defined a 300 bp region which is essential for its transcription and performed site directed mutagenesis and electrophoretic mobility shift assays. This analysis indicated that Sp1, Sp3 and c-Myc bind to the GC-boxes and E-boxes, respectively, within the promoter and help activate the transcription of mTert gene. We also identified a novel binding sequence, found repeated within the mTert core region, which when mutated caused increased mTert expression. Yeast one hybrid screening combined with electrophoretic mobility shift assays indicated that the nuclear protein Zap3 binds to this site and its overexpression leads to the downregulation of mTert during differentiation. This suggests that regulation of mTert transcription is a complex process which depends on a quantitative balance between transcription factors that cause activation or repression of this gene. Overexpression of Zap3 in murine embryonic stem cells results in reduction in telomerase activity and telomere length as well as reduced proliferative capacity and limited ability to contribute to the development of haematopoietic cells upon differentiation.
Citation
Armstrong, L., Lako, M., van Herpe, I., Evans, J., Saretzki, G., & Hole, N. (2004). A role for nucleoprotein Zap3 in the reduction of telomerase activity during embryonic stem cell differentiation. Mechanisms of development, 121(12), 1509-1522. https://doi.org/10.1016/j.mod.2004.07.005
Journal Article Type | Article |
---|---|
Publication Date | Dec 1, 2004 |
Deposit Date | Feb 13, 2009 |
Journal | Mechanisms of Development |
Print ISSN | 0925-4773 |
Electronic ISSN | 1872-6356 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 121 |
Issue | 12 |
Pages | 1509-1522 |
DOI | https://doi.org/10.1016/j.mod.2004.07.005 |
Keywords | Murine telomerase reverse transcriptase, Haematopoiesis, Embryonic stem cells, TRAP assay, GFP, Zap3, Hematopoietic commitment, Cell cycle, Cell proliferation. |
Public URL | https://durham-repository.worktribe.com/output/1556690 |
You might also like
Dermal stem cells can differentiate down an endothelial lineage.
(2012)
Journal Article
Telomerase expression in the mammalian heart
(2012)
Journal Article
Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells.
(2008)
Journal Article
Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages
(2003)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search