M. El-Amrani
Large Eddy Simulation of Turbulent Heat Transport in the Strait of Gibraltar.
El-Amrani, M.; Seaid, M.
Abstract
We develop a numerical model for large eddy simulation of turbulent heat transport in the Strait of Gibraltar. The flow equations are the incompressible Navier–Stokes equations including Coriolis forces and density variation through the Boussinesq approximation. The turbulence effects are incorporated in the system by considering the Smagorinsky model. As a numerical solver we propose a finite element semi-Lagrangian method. The solution procedure consists of combining a non-oscillatory semi-Lagrangian scheme for time discretization with the finite element method for space discretization. Numerical results illustrate a buoyancy-driven circulations along the Strait of Gibraltar and the sea-surface temperature is flushed out and move to northeast coast. The Ocean discharge and the temperature difference are shown to control the plume structure.
Citation
El-Amrani, M., & Seaid, M. (2009). Large Eddy Simulation of Turbulent Heat Transport in the Strait of Gibraltar. Mathematics and Computers in Simulation, 79(12), 3444-3454. https://doi.org/10.1016/j.matcom.2009.04.013
Journal Article Type | Article |
---|---|
Publication Date | 2009-08 |
Journal | Mathematics and Computers in Simulation |
Print ISSN | 0378-4754 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 79 |
Issue | 12 |
Pages | 3444-3454 |
DOI | https://doi.org/10.1016/j.matcom.2009.04.013 |
Keywords | Large eddy simulation, Heat transport, Semi-Lagrangian scheme, Finite elements method, Strait of Gibraltar. |
Public URL | https://durham-repository.worktribe.com/output/1555689 |
You might also like
A novel approach for modelling stress fields induced by shallow water flows on movable beds
(2025)
Journal Article
A fractional time-stepping method for unsteady thermal convection in non-Newtonian fluids
(2024)
Journal Article
High-order spline finite element method for solving time-dependent electromagnetic waves
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search