D.W. Haughie
The integrity of welded interfaces in ultra-high molecular weight polyethylene: Part 2 - Interface Toughness.
Haughie, D.W.; Buckley, C.P.; Wu, J.J.
Abstract
In Part 2 of a study of welding of ultra-high molecular weight polyethylene (UHMWPE), experiments were conducted to measure the interfacial fracture energy of butt welds, for various welding times and temperatures above the melting point. Their toughness was investigated at 37 °C in terms of their fracture energy, obtained by adapting the essential work of fracture (EWF) method. However, a proportion of the welded samples (generally decreasing with increasing welding time or temperature) failed in dual ductile/brittle mode, hence invalidating the EWF test. Even those failing in purely ductile mode showed a measurable interface work of fracture only for the highest weld temperature and time: 188 °C and 90 min. Results from the model presented in Part 1 show that this corresponds to the maximum reptated molecular weight reaching close to the peak in the molar mass distribution. Hence this work provides the first experimental evidence that the slow rate of self-diffusion in UHMWPE leads to welded interfaces acting as low-toughness crack paths. Since such interfaces exist around every powder particle in processed UHMWPE this problem cannot be avoided, and it must be accommodated in design of hip and knee bearing surfaces made from this polymer.
Citation
Haughie, D., Buckley, C., & Wu, J. (2006). The integrity of welded interfaces in ultra-high molecular weight polyethylene: Part 2 - Interface Toughness. Biomaterials, 27(21), 3875-3881. https://doi.org/10.1016/j.biomaterials.2006.03.010
Journal Article Type | Article |
---|---|
Publication Date | 2006-07 |
Journal | Biomaterials |
Print ISSN | 0142-9612 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 27 |
Issue | 21 |
Pages | 3875-3881 |
DOI | https://doi.org/10.1016/j.biomaterials.2006.03.010 |
Public URL | https://durham-repository.worktribe.com/output/1555580 |
You might also like
Thermochemical conversion of biomass: Potential future prospects
(2023)
Journal Article
Permeate Flux in Ultrafiltration Processes—Understandings and Misunderstandings
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search