Skip to main content

Research Repository

Advanced Search

The complexity of soft constraint satisfaction

Cohen, D.; Cooper, M.; Jeavons, P.; Krokhin, A.


D. Cohen

M. Cooper

P. Jeavons


Over the past few years there has been considerable progress in methods to systematically analyse the complexity of constraint satisfaction problems with specified constraint types. One very powerful theoretical development in this area links the complexity of a set of constraints to a corresponding set of algebraic operations, known as polymorphisms. In this paper we extend the analysis of complexity to the more general framework of combinatorial optimisation problems expressed using various forms of soft constraints. We launch a systematic investigation of the complexity of these problems by extending the notion of a polymorphism to a more general algebraic operation, which we call a multimorphism. We show that many tractable sets of soft constraints, both established and novel, can be characterised by the presence of particular multimorphisms. We also show that a simple set of NP-hard constraints has very restricted multimorphisms. Finally, we use the notion of multimorphism to give a complete classification of complexity for the Boolean case which extends several earlier classification results for particular special cases.


Cohen, D., Cooper, M., Jeavons, P., & Krokhin, A. (2006). The complexity of soft constraint satisfaction. Artificial Intelligence, 170(11), 983-1016.

Journal Article Type Article
Publication Date 2006-08
Deposit Date Aug 24, 2006
Journal Artificial Intelligence
Print ISSN 0004-3702
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 170
Issue 11
Pages 983-1016
Keywords Soft constraints, Valued constraint satisfaction, Combinatorial optimisation, Submodular functions, Tractability, Multimorphism.