R.N. Thompson
Origin of CFB magmatism: Multi-tiered intracrustal picrite-rhyolite magmatic plumbing at Spitzkoppe, western Namibia, during early-Cretaceous Etendeka magmatism
Thompson, R.N.; Riches, A.J.V.; Antoshechkina, P.M.; Pearson, D.G.; Nowell, G.M.; Ottley, C.J.; Dickin, A.P.; Hards, V.L.; Nguno, A.K.; Niku-Paavola, V.
Authors
A.J.V. Riches
P.M. Antoshechkina
D.G. Pearson
Dr Geoffrey Nowell g.m.nowell@durham.ac.uk
Associate Professor
Dr Christopher Ottley c.j.ottley@durham.ac.uk
Senior Research Officer
A.P. Dickin
V.L. Hards
A.K. Nguno
V. Niku-Paavola
Abstract
Early Cretaceous tholeiitic picrite-to-rhyolite dykes around Spitzkoppe, western Namibia, are part of the extensive Henties Bay–Outjo swarm, penecontemporaneous with 132 Ma Etendeka lavas 100 km to the NW. Although only intermediate to rhyolitic dykes contain clinopyroxene phenocrysts, the behaviour of Ca, Al and Sc in the dyke suite shows that liquidus clinopyroxene—together with olivine—was a fractionating phase when MgO fell to 9 wt %. Both a plot of CIPW normative di–hy–ol–ne–Q and modelling using (p)MELTS show that a mid-crustal pressure of 0·6 GPa is consistent with this early clinopyroxene saturation. Sr, Nd, Hf and Pb isotope variations all show trends consistent with AFC contamination (assimilation linked to fractional crystallization), involving Pan-African Damara belt continental crust. The geochemical variation, including isenthalpic AFC modelling using (p)MELTS, suggests that the picrites (olivine-rich cumulate suspensions) were interacting with granulite-facies metamorphic lower crust, the intermediate compositions with amphibolite-facies middle crust, and the rhyolitic dykes (and a few of the basalts) with the Pan-African granites of the upper crust. The calculated densities of the magmas fall systematically from picrite to rhyolite and suggest a magmatic system resembling a stack of sills throughout the crust beneath Spitzkoppe, with the storage and fractionation depth of each magma fraction controlled by its density. Elemental and isotopic features of the 20 wt % MgO picrites (including Os isotopes) suggest that their parental melts probably originated by fusion of mid-ocean ridge basalt (MORB) source convecting mantle, followed by limited reaction with sub-continental lithospheric mantle metasomatized just prior to the formation of the parental magmas. Many of the distinctive features of large-volume picritic–basaltic magmas may not be derived from their ultimate mantle sources, but may instead be the results of complex polybaric fractional crystallization and multi-component crustal contamination.
Citation
Thompson, R., Riches, A., Antoshechkina, P., Pearson, D., Nowell, G., Ottley, C., …Niku-Paavola, V. (2007). Origin of CFB magmatism: Multi-tiered intracrustal picrite-rhyolite magmatic plumbing at Spitzkoppe, western Namibia, during early-Cretaceous Etendeka magmatism. Journal of Petrology, 48(6), 1119-1154. https://doi.org/10.1093/petrology/egm012
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 27, 2007 |
Publication Date | Jun 1, 2007 |
Deposit Date | Feb 20, 2007 |
Journal | Journal of Petrology |
Print ISSN | 0022-3530 |
Electronic ISSN | 1460-2415 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 48 |
Issue | 6 |
Pages | 1119-1154 |
DOI | https://doi.org/10.1093/petrology/egm012 |
Keywords | Flood basalts, Spitzkoppe, Picrite, Trace elements, Hafnium isotopes, Etendeka. |
Public URL | https://durham-repository.worktribe.com/output/1548383 |
You might also like
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search