J.C. Gladstone
The ultraluminous state
Gladstone, J.C.; Roberts, T.P.; Done, C.
Authors
Professor Tim Roberts t.p.roberts@durham.ac.uk
Professor
Professor Christine Done chris.done@durham.ac.uk
Professor
Abstract
We revisit the question of the nature of ultraluminous X-ray sources (ULXs) through a detailed investigation of their spectral shape, using the highest quality X-ray data available in the XMM–Newton public archives (≳10 000 counts in their EPIC spectrum). We confirm that simple spectral models commonly used for the analysis and interpretation of ULXs (power-law continuum and multicolour disc blackbody models) are inadequate in the face of such high-quality data. Instead we find two near ubiquitous features in the spectrum: a soft excess and a rollover in the spectrum at energies above 3 keV. We investigate a range of more physical models to describe these data. Slim discs which include radiation trapping (approximated by a p-free disc model) do not adequately fit the data, and several objects give unphysically high disc temperatures (kTin > 3 keV). Instead, disc plus Comptonized corona models fit the data well, but the derived corona is cool and optically thick (τ∼ 5–30). This is unlike the τ∼ 1 coronae seen in Galactic binaries, ruling out models where ULXs are powered by sub-Eddington accretion on to an intermediate-mass black hole despite many objects having apparently cool disc temperatures. We argue that these observed disc temperatures are not a good indicator of the black hole mass as the powerful, optically thick corona drains energy from the inner disc and obscures it. We estimate the intrinsic (corona-less) disc temperature, and demonstrate that in most cases it lies in the regime of stellar mass black holes. These objects have spectra which range from those similar to the highest mass accretion rate states in Galactic binaries (a single peak at 2–3 keV) to those which clearly have two peaks, one at energies below 1 keV (from the outer, un-Comptonized disc) and one above 3 keV (from the Comptonized, inner disc). However, a few ULXs have a significantly cooler corrected disc temperature; we suggest that these are the most extreme stellar mass black hole accretors, in which a massive wind completely envelopes the inner-disc regions, creating a cool photosphere. We conclude that ULXs provide us with an observational template for the transition between Eddington and super-Eddington accretion flows, with the latter occupying a new ultraluminous accretion state.
Citation
Gladstone, J., Roberts, T., & Done, C. (2009). The ultraluminous state. Monthly Notices of the Royal Astronomical Society, 397(4), 1836-1851. https://doi.org/10.1111/j.1365-2966.2009.15123.x
Journal Article Type | Article |
---|---|
Publication Date | Aug 21, 2009 |
Deposit Date | Feb 20, 2014 |
Publicly Available Date | Feb 21, 2014 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 397 |
Issue | 4 |
Pages | 1836-1851 |
DOI | https://doi.org/10.1111/j.1365-2966.2009.15123.x |
Keywords | Accretion, Accretion discs, Black hole physics, X-rays, Binaries, Galaxies. |
Public URL | https://durham-repository.worktribe.com/output/1545750 |
Files
Published Journal Article
(1.3 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly notices of the Royal Astronomical Society. © 2009 The Authors. Journal compilation © 2009 RAS.
Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
Examining the nature of the ultraluminous X-ray source Holmberg II X-1
(2024)
Journal Article
Digging a little deeper: characterizing three new extreme ULX candidates
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search