Dr Stefan Dantchev s.s.dantchev@durham.ac.uk
Assistant Professor
Cutting Planes and the Parameter Cutwidth
Dantchev, Stefan; Martin, Barnaby
Authors
Barnaby Martin
Contributors
K. Ambos-Spies
Editor
B. Löwe
Editor
W. Merkle
Editor
Abstract
We introduce the parameter cutwidth for the Cutting Planes (CP) system of Gomory and Chvátal. We provide linear lower bounds on cutwidth for two simple polytopes. Considering CP as a propositional refutation system, one can see that the cutwidth of a CNF contradiction F is always bound above by the Resolution width of F. We provide an example proving that the converse fails: there is an F which has constant cutwidth, but has Resolution width Ω(n). Following a standard method for converting an FO sentence ψ, without finite models, into a sequence of CNFs, F ψ,n , we provide a classification theorem for CP based on the sum cutwidth plus rank. Specifically, the cutwidth+rank of F ψ,n is bound by a constant c (depending on ψ only) iff ψ has no (infinite) models. This result may be seen as a relative of various gap theorems extant in the literature.
Citation
Dantchev, S., & Martin, B. (2012). Cutting Planes and the Parameter Cutwidth. Theory of Computing Systems, 51(1), 50-64. https://doi.org/10.1007/s00224-011-9373-0
Journal Article Type | Article |
---|---|
Publication Date | 2012-07 |
Deposit Date | Dec 15, 2009 |
Journal | Theory of Computing Systems |
Print ISSN | 1432-4350 |
Electronic ISSN | 1433-0490 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 51 |
Issue | 1 |
Pages | 50-64 |
DOI | https://doi.org/10.1007/s00224-011-9373-0 |
Public URL | https://durham-repository.worktribe.com/output/1524210 |
You might also like
Depth lower bounds in Stabbing Planes for combinatorial principles
(2024)
Journal Article
Relativization makes contradictions harder for Resolution
(2013)
Journal Article
Rank complexity gap for Lovász-Schrijver and Sherali-Adams proof systems
(2012)
Journal Article
Parameterized Proof Complexity
(2011)
Journal Article
The limits of tractability in Resolution-based propositional proof systems
(2011)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search