Professor Andrew Lobb andrew.lobb@durham.ac.uk
Professor
Given a diagram D of a knot K, we give easily computable bounds for Rasmussen’s concordance invariant s(K). The bounds are not independent of the diagram D chosen, but we show that for diagrams satisfying a given condition the bounds are tight. As a corollary we improve on previously known Bennequin-type bounds on the slice genus.
Lobb, A. (2011). Computable bounds for Rasmussen's concordance invariant. Compositio Mathematica, 147(2), 661-668. https://doi.org/10.1112/s0010437x10005117
Journal Article Type | Article |
---|---|
Publication Date | Mar 1, 2011 |
Deposit Date | Oct 18, 2011 |
Publicly Available Date | Feb 4, 2014 |
Journal | Compositio Mathematica |
Print ISSN | 0010-437X |
Electronic ISSN | 1570-5846 |
Publisher | Cambridge University Press |
Peer Reviewed | Peer Reviewed |
Volume | 147 |
Issue | 2 |
Pages | 661-668 |
DOI | https://doi.org/10.1112/s0010437x10005117 |
Keywords | Knots, Slice genus, Slice-bennequin. |
Public URL | https://durham-repository.worktribe.com/output/1503472 |
Accepted Journal Article
(132 Kb)
PDF
Copyright Statement
The original publication is available at www.springerlink.com
Squeezed knots
(2024)
Journal Article
On the values taken by slice torus invariants
(2023)
Journal Article
Cyclic quadrilaterals and smooth Jordan curves
(2023)
Journal Article
A calculus for flow categories
(2022)
Journal Article
Almost positive links are strongly quasipositive
(2022)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search