M.J. Stringer
Principles of supernova-driven winds
Stringer, M.J.; Bower, R.G.; Cole, S.; Frenk, C.S.; Theuns, T.
Authors
R.G. Bower
Professor Shaun Cole shaun.cole@durham.ac.uk
Director of the Institute for Computational Cosmology
Professor Carlos Frenk c.s.frenk@durham.ac.uk
Professor
T. Theuns
Abstract
The formation of galaxies is regulated by a balance between the supply of gas and the rate at which it is ejected. Traditional explanations of gas ejection equate the energy required to escape the galaxy or host halo to an estimate for the energy yield from supernovae. This yield is usually assumed to be a constant fraction of the total available from the supernova, or is derived from the assumption of a consistent momentum yield. By applying these ideas in the context of a cold dark matter cosmogony, we derive a first-order analytic connection between these working assumptions and the expected relationship between baryon content and galaxy circular velocity, and find that these quick predictions straddle recent observational estimates. To examine the premises behind these theories in more detail, we then explore their applicability to a set of gasdynamical simulations of idealized galaxies. We show that different premises dominate to differing degrees in the simulated outflow, depending on the mass of the system and the resolution with which it is simulated. Using this study to anticipate the emergent behaviour at arbitrarily high resolution, we motivate more comprehensive analytic model which allows for the range of velocities with which the gas may exit the system, and incorporates both momentum and energy-based constraints on the outflow. Using a trial exit velocity distribution, this is shown to be compatible with the observed baryon fractions in intermediate-mass systems, but implies that current estimates for low-mass systems cannot be solely accounted for by supernova winds under commonly held assumptions.
Citation
Stringer, M., Bower, R., Cole, S., Frenk, C., & Theuns, T. (2012). Principles of supernova-driven winds. Monthly Notices of the Royal Astronomical Society, 423(2), 1596-1609. https://doi.org/10.1111/j.1365-2966.2012.20982.x
Journal Article Type | Article |
---|---|
Publication Date | Jun 21, 2012 |
Deposit Date | Mar 5, 2013 |
Publicly Available Date | Aug 21, 2014 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 423 |
Issue | 2 |
Pages | 1596-1609 |
DOI | https://doi.org/10.1111/j.1365-2966.2012.20982.x |
Keywords | Supernovae: general, ISM: supernova remnants, Galaxies: evolution, Galaxies: formation. |
Public URL | https://durham-repository.worktribe.com/output/1496375 |
Files
Published Journal Article
(1.6 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS Published by Oxford University Press on behalf of Royal Astronomical Society. All rights reserved.
You might also like
The impact and response of mini-haloes and the interhalo medium on cosmic reionization
(2024)
Journal Article
The FLAMINGO project: revisiting the S8 tension and the role of baryonic physics
(2023)
Journal Article
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search