H. Zhao
Testing gravity theories via transverse Doppler and gravitational redshifts in galaxy clusters
Zhao, H.; Peacock, J.; Li, B.
Abstract
There is growing interest in testing alternative gravity theories using the subtle gravitational redshifts in clusters of galaxies. However, current models all neglect a transverse Doppler redshift of similar magnitude, and some models are not self-consistent. An equilibrium model would fix the gravitational and transverse Doppler velocity shifts to be about 6σ2/c and 3σ2/2c in order to fit the observed velocity dispersion σ self-consistently. This result comes from the virial theorem for a spherical isotropic cluster, and is insensitive to the theory of gravity. A gravitational redshift signal also does not directly distinguish between the Einsteinian and f(R) gravity theories, because each theory requires a different dark halo mass function to keep the clusters in equilibrium. When this constraint is imposed, the gravitational redshift has no sensitivity to theory. Indeed, our N-body simulations show that the halo mass function differs in f(R), and that the transverse Doppler effect is stronger than analytically predicted due to nonequilibrium.
Citation
Zhao, H., Peacock, J., & Li, B. (2013). Testing gravity theories via transverse Doppler and gravitational redshifts in galaxy clusters. Physical Review D, 88(4), Article 043013. https://doi.org/10.1103/physrevd.88.043013
Journal Article Type | Article |
---|---|
Publication Date | Aug 1, 2013 |
Deposit Date | Mar 27, 2013 |
Publicly Available Date | May 8, 2014 |
Journal | Physical Review D - Particles, Fields, Gravitation, and Cosmology |
Print ISSN | 1550-7998 |
Electronic ISSN | 1550-2368 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 88 |
Issue | 4 |
Article Number | 043013 |
DOI | https://doi.org/10.1103/physrevd.88.043013 |
Public URL | https://durham-repository.worktribe.com/output/1490022 |
Files
Published Journal Article
(193 Kb)
PDF
Copyright Statement
Reprinted with permission from the American Physical Society: Zhao, H. and Peacock, J. and Li, B., Physical review D, 88 (4). p. 043013, 2013. © 2013 by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.
You might also like
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
MGLENS: Modified gravity weak lensing simulations for emulation-based cosmological inference
(2023)
Journal Article
Upscaling ExaHyPE – on each and every core
(2023)
Report
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search