B.D. Lehmer
A Chandra Perspective on Galaxy-wide X-ray Binary Emission and its Correlation with Star Formation Rate and Stellar Mass: New Results from Luminous Infrared Galaxies
Lehmer, B.D.; Alexander, D.M.; Bauer, F.E.; Brandt, W.N.; Goulding, A.D.; Jenkins, L.P.; Ptak, A.; Roberts, T.P.
Authors
Professor David Alexander d.m.alexander@durham.ac.uk
Professor
F.E. Bauer
W.N. Brandt
A.D. Goulding
L.P. Jenkins
A. Ptak
Professor Tim Roberts t.p.roberts@durham.ac.uk
Professor
Abstract
We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D < 60 Mpc and low Galactic column densities of N H <~ 5 × 1020 cm-2. The LIRGs in our sample have total infrared (8-1000 μm) luminosities in the range of L IR≈ (1-8) × 1011 L sun. The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M sstarf) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (L gal HX) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M sstarf, respectively, we constrain the relation L gal HX = αM sstarf + βSFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of α = (9.05 ± 0.37) × 1028 erg s-1 M -1 sun and β = (1.62 ± 0.22) × 1039 erg s-1 (M sun yr-1)-1. This scaling provides a more physically meaningful estimate of L gal HX, with ≈0.1-0.2 dex less scatter, than a direct linear scaling with SFR. Our results suggest that HMXBs dominate the galaxy-wide X-ray emission for galaxies with SFR/M sstarf gsim5.9 × 10-11 yr-1, a factor of ≈2.9 times lower than previous estimates. We find that several of the most powerful LIRGs and ULIRGs, with SFR/M sstarf >~ 10-9 yr-1, appear to be X-ray underluminous with respect to our best-fit relation. We argue that these galaxies are likely to contain X-ray binaries residing in compact star-forming regions that are buried under thick galactic columns large enough to attenuate emission in the 2-10 keV band (N H >~ 1023 cm-2).
Citation
Lehmer, B., Alexander, D., Bauer, F., Brandt, W., Goulding, A., Jenkins, L., …Roberts, T. (2010). A Chandra Perspective on Galaxy-wide X-ray Binary Emission and its Correlation with Star Formation Rate and Stellar Mass: New Results from Luminous Infrared Galaxies. Astrophysical Journal, 724(1), 559-571. https://doi.org/10.1088/0004-637x/724/1/559
Journal Article Type | Article |
---|---|
Publication Date | Nov 1, 2010 |
Deposit Date | Jan 30, 2012 |
Publicly Available Date | Jan 3, 2014 |
Journal | Astrophysical Journal |
Print ISSN | 0004-637X |
Electronic ISSN | 1538-4357 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 724 |
Issue | 1 |
Pages | 559-571 |
DOI | https://doi.org/10.1088/0004-637x/724/1/559 |
Keywords | Cosmology, Observations, Galaxies, Starburst, Infrared, X-rays, Binaries. |
Public URL | https://durham-repository.worktribe.com/output/1488813 |
Files
Published Journal Article
(1.3 Mb)
PDF
You might also like
The high energy X-ray probe (HEX-P): bringing the cosmic X-ray background into focus
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search