Skip to main content

Research Repository

Advanced Search

A complexity-performance-balanced multiuser detector based on artificial fish swarm algorithm for DS-UWB systems in the AWGN and multipath environments

Yin, Z.; Zong, Z.; Sun, Hongjian; Wu, Z.; Yang, Z.

A complexity-performance-balanced multiuser detector based on artificial fish swarm algorithm for DS-UWB systems in the AWGN and multipath environments Thumbnail


Authors

Z. Yin

Z. Zong

Z. Wu

Z. Yang



Abstract

In this article, an efficient multiuser detector based on the artificial fish swarm algorithm (AFSA-MUD) is proposed and investigated for direct-sequence ultrawideband systems under different channels: the additive white Gaussian noise channel and the IEEE 802.15.3a multipath channel. From the literature review, the issues that the computational complexity of classical optimum multiuser detection (OMD) rises exponentially with the number of users and the bit error rate (BER) performance of other sub-optimal multiuser detectors is not satisfactory, still need to be solved. This proposed method can make a good tradeoff between complexity and performance through the various behaviors of artificial fishes in the simplified Euclidean solution space, which is constructed by the solutions of some sub-optimal multiuser detectors. Here, these sub-optimal detectors are minimum mean square error detector, decorrelating detector, and successive interference cancellation detector. As a result of this novel scheme, the convergence speed of AFSA-MUD is greatly accelerated and the number of iterations is also significantly reduced. The experimental results demonstrate that the BER performance and the near–far effect resistance of this proposed algorithm are quite close to those of OMD, while its computational complexity is much lower than the traditional OMD. Moreover, as the number of active users increases, the BER performance of AFSA-MUD is almost the same as that of OMD.

Journal Article Type Article
Acceptance Date Oct 12, 2012
Publication Date Oct 30, 2012
Deposit Date Apr 16, 2013
Publicly Available Date Dec 2, 2015
Journal EURASIP Journal on Advances in Signal Processing
Print ISSN 1687-6172
Publisher SpringerOpen
Peer Reviewed Peer Reviewed
Volume 2012
Article Number 229
DOI https://doi.org/10.1186/1687-6180-2012-229
Keywords DS-UWB, Multiuser detection (MUD), Artificial fish swarm algorithm (AFSA), Euclidean solution space.
Public URL https://durham-repository.worktribe.com/output/1456204

Files






You might also like



Downloadable Citations