Professor Stewart Jamieson stewart.jamieson@durham.ac.uk
Professor
Professor Stewart Jamieson stewart.jamieson@durham.ac.uk
Professor
A. Vieli
Professor Colm O'Cofaigh colm.ocofaigh@durham.ac.uk
Head Of Department
Professor Chris Stokes c.r.stokes@durham.ac.uk
Professor
S.J. Livingstone
C-D. Hillenbrand
Using a one-dimensional numerical model of ice-stream flow with robust grounding-line dynamics, we explore controls on paleo-ice-stream retreat in Marguerite Bay, Antarctica, during the last deglaciation. Landforms on the continental shelf constrain the numerical model and suggest retreat was rapid but punctuated by a series of slowdowns. We investigate the sensitivity of ice-stream retreat to changes in subglacial and lateral topography, and to forcing processes including sea-level rise, enhanced melting beneath an ice shelf, atmospheric warming, and ice-shelf debuttressing. Our experiments consistently reproduce punctuated retreat on a bed that deepens inland, with retreat-rate slowdowns controlled by narrowings in the topography. Sensitivity experiments indicate that the magnitudes of change required for individual forcing mechanisms to initiate retreat are unrealistically high but that thresholds are reduced when processes act in combination. The ice stream is, however, most sensitive to ocean warming and associated ice-shelf melting and retreat was most likely in response to external forcing that endured throughout the period of retreat rather than to a single triggering ‘event’. Timescales of retreat are further controlled by the delivery of ice from upstream of the grounding line. Due to the influence of topography, modeled retreat patterns are insensitive to the temporal pattern of forcing evolution. We therefore suggest that despite regionally similar forcing mechanisms, landscape controls significant contrasts in retreat behavior between adjacent but topographically distinct catchments. Patterns of ice-stream retreat in the past, present and future should therefore be expected to vary significantly.
Jamieson, S., Vieli, A., Ó Cofaigh, C., Stokes, C., Livingstone, S., & Hillenbrand, C. (2014). Understanding controls on rapid ice-stream retreat during the last deglaciation of Marguerite Bay, Antarctica, using a numerical model. Journal of Geophysical Research: Earth Surface, 119(2), 247-263. https://doi.org/10.1002/2013jf002934
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 26, 2013 |
Online Publication Date | Feb 18, 2014 |
Publication Date | Feb 18, 2014 |
Deposit Date | Jul 30, 2013 |
Publicly Available Date | Mar 19, 2014 |
Journal | Journal of Geophysical Research: Earth Surface |
Print ISSN | 2169-9011 |
Publisher | American Geophysical Union |
Peer Reviewed | Peer Reviewed |
Volume | 119 |
Issue | 2 |
Pages | 247-263 |
DOI | https://doi.org/10.1002/2013jf002934 |
Keywords | Ice stream, Numerical model, Grounding line, LGM retreat, Antarctica. |
Public URL | https://durham-repository.worktribe.com/output/1452322 |
Published Journal Article
(5.4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
©2013. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Snow petrel stomach-oil deposits as a new biological archive of Antarctic sea ice
(2022)
Journal Article
The geomorphological record of an ice stream to ice shelf transition in Northeast Greenland
(2023)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search