Kai Chao
New Oxazoline- and Thiazoline-Containing Heteroleptic Iridium(III) Complexes for Highly-Efficient Phosphorescent Organic Light-Emitting Devices (PhOLEDs): Colour Tuning by Varying the Electroluminescence Bandwidth
Chao, Kai; Shao, Kuizhan; Peng, Tai; Zhu, Dongxia; Wang, Yue; Liu, Yu; Sua, Zhongmin; Bryce, Martin R.
Authors
Kuizhan Shao
Tai Peng
Dongxia Zhu
Yue Wang
Yu Liu
Zhongmin Sua
Professor Martin Bryce m.r.bryce@durham.ac.uk
Professor
Abstract
Two new homologous phosphorescent iridium complexes, bis-(2-phenylpyridine)(2-(2′-hydroxyphenyl)-2-oxazoline)iridium(III) [(ppy)2Ir(oz)] (1) and bis-(2-phenylpyridine)(2-(2′-hydroxyphenyl)-2-thiazoline)iridium(III) [(ppy)2Ir(thoz)] (2), have been obtained in good yields and characterized by single-crystal X-ray diffraction, cyclic voltammetry, photoluminescence and electroluminescence studies, and by time-dependent density functional theory (TD-DFT) calculations. Using the two complexes, which differ only by the heteroatom (O or S) substitution at the same site in the ancillary ligand, as the emitter, doped in a 4,4′-bis(N-carbazolyl)biphenyl (CBP) host, gave phosphorescent organic light-emitting diodes (PhOLEDs) with very efficient green and yellow emission, respectively. The turn-on voltages for both devices are low (3.5–3.7 V). The green-emitting (ppy)2Ir(oz) – based device has a maximum brightness of 61560 cd m−2 (at 16 V); maximum luminance efficiency of 66.2 cd A−1, 17.1% external quantum efficiency, 54 lm W−1 power efficiency and CIE coordinates of (0.35, 0.61) at a brightness of 10000 cd m−2. For the yellow-emitting (ppy)2Ir(thoz)-based device with a wide full spectral width at half maximum (FWHM) of 110 nm, the corresponding values are 21350 cd m−2 (at 14.5 V); 27.0 cd A−1, 8.5%, 18.0 lm W−1 and CIE coordinates of (0.46, 0.50). Colour tuning is primarily a consequence of the significantly wider emission bandwidth of complex 2 compared to complex 1.
Citation
Chao, K., Shao, K., Peng, T., Zhu, D., Wang, Y., Liu, Y., …Bryce, M. R. (2013). New Oxazoline- and Thiazoline-Containing Heteroleptic Iridium(III) Complexes for Highly-Efficient Phosphorescent Organic Light-Emitting Devices (PhOLEDs): Colour Tuning by Varying the Electroluminescence Bandwidth. Journal of Materials Chemistry C Materials for optical and electronic devices, 1(41), 6800-6806. https://doi.org/10.1039/c3tc31463d
Journal Article Type | Article |
---|---|
Publication Date | Nov 7, 2013 |
Deposit Date | Nov 24, 2014 |
Publicly Available Date | Nov 26, 2014 |
Journal | Journal of Materials Chemistry C |
Print ISSN | 2050-7526 |
Electronic ISSN | 2050-7534 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 1 |
Issue | 41 |
Pages | 6800-6806 |
DOI | https://doi.org/10.1039/c3tc31463d |
Public URL | https://durham-repository.worktribe.com/output/1449905 |
Files
Accepted Journal Article
(584 Kb)
PDF
You might also like
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search