V. Green
Mutants of phage bIL67 RuvC with enhanced Holliday junction binding selectivity and resolution symmetry
Green, V.; Curtis, F.A.; Sedelnikova, S.; Rafferty, J.B.; Sharples, G.
Authors
F.A. Curtis
S. Sedelnikova
J.B. Rafferty
Dr Gary Sharples gary.sharples@durham.ac.uk
Associate Professor
Abstract
Viral and bacterial Holliday junction resolvases differ in specificity with the former typically being more promiscuous, acting on a variety of branched DNA substrates, while the latter exclusively targets Holliday junctions. We have determined the crystal structure of a RuvC resolvase from bacteriophage bIL67 to help identify features responsible for DNA branch discrimination. Comparisons between phage and bacterial RuvC structures revealed significant differences in the number and position of positively-charged residues in the outer sides of the junction binding cleft. Substitutions were generated in phage RuvC residues implicated in branch recognition and six were found to confer defects in Holliday junction and replication fork cleavage in vivo. Two mutants, R121A and R124A that flank the DNA binding site were purified and exhibited reduced in vitro binding to fork and linear duplex substrates relative to the wild-type, while retaining the ability to bind X junctions. Crucially, these two variants cleaved Holliday junctions with enhanced specificity and symmetry, a feature more akin to cellular RuvC resolvases. Thus, additional positive charges in the phage RuvC binding site apparently stabilize productive interactions with branched structures other than the canonical Holliday junction, a feature advantageous for viral DNA processing but deleterious for their cellular counterparts.
Citation
Green, V., Curtis, F., Sedelnikova, S., Rafferty, J., & Sharples, G. (2013). Mutants of phage bIL67 RuvC with enhanced Holliday junction binding selectivity and resolution symmetry. Molecular Microbiology, 89(6), 1240-1258. https://doi.org/10.1111/mmi.12343
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 23, 2013 |
Online Publication Date | Aug 14, 2013 |
Publication Date | Sep 1, 2013 |
Deposit Date | Jul 25, 2013 |
Publicly Available Date | Feb 4, 2014 |
Journal | Molecular Microbiology |
Print ISSN | 0950-382X |
Electronic ISSN | 1365-2958 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 89 |
Issue | 6 |
Pages | 1240-1258 |
DOI | https://doi.org/10.1111/mmi.12343 |
Public URL | https://durham-repository.worktribe.com/output/1449626 |
Files
Published Journal Article
(1.4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
You might also like
Antibacterial mechanism of Malaysian Carey clay against food-borne Staphylococcus aureus
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search