A. Barreira
The observational status of Galileon gravity after Planck
Barreira, A.; Li, B.; Baugh, C.M.; Pascoli, S.
Authors
Professor Baojiu Li baojiu.li@durham.ac.uk
Professor
C.M. Baugh
Professor Silvia Pascoli silvia.pascoli@durham.ac.uk
Visiting Professor
Abstract
We use the latest CMB data from Planck, together with BAO measurements, to constrain the full parameter space of Galileon gravity. We constrain separately the three main branches of the theory known as the Cubic, Quartic and Quintic models, and find that all yield a very good fit to these data. Unlike in ΛCDM, the Galileon model constraints are compatible with local determinations of the Hubble parameter and predict nonzero neutrino masses at over 5σ significance. We also identify that the low l part of the CMB lensing spectrum may be able to distinguish between ΛCDM and Galileon models. In the Cubic model, the lensing potential deepens at late times on sub-horizon scales, which is at odds with the current observational suggestion of a positive ISW effect. Compared to ΛCDM, the Quartic and Quintic models predict less ISW power in the low l region of the CMB temperature spectrum, and as such are slightly preferred by the Planck data. We illustrate that residual local modifications to gravity in the Quartic and Quintic models may render the Cubic model as the only branch of Galileon gravity that passes Solar System tests.
Citation
Barreira, A., Li, B., Baugh, C., & Pascoli, S. (2014). The observational status of Galileon gravity after Planck. Journal of Cosmology and Astroparticle Physics, 2014(08), Article 059. https://doi.org/10.1088/1475-7516/2014/08/059
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 31, 2014 |
Online Publication Date | Aug 27, 2014 |
Publication Date | Aug 27, 2014 |
Deposit Date | Oct 2, 2014 |
Publicly Available Date | Aug 26, 2016 |
Journal | Journal of Cosmology and Astroparticle Physics |
Electronic ISSN | 1475-7516 |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 2014 |
Issue | 08 |
Article Number | 059 |
DOI | https://doi.org/10.1088/1475-7516/2014/08/059 |
Public URL | https://durham-repository.worktribe.com/output/1444760 |
Related Public URLs | http://arxiv.org/abs/1406.0485 |
Files
Accepted Journal Article
(2.9 Mb)
PDF
Copyright Statement
This is an author-created, un-copyedited version of an article published in Journal of Cosmology and Astroparticle Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/1475-7516/2014/08/059
You might also like
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
MGLENS: Modified gravity weak lensing simulations for emulation-based cosmological inference
(2023)
Journal Article
Upscaling ExaHyPE – on each and every core
(2023)
Report
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search