F. Mroz
An Empirical Comparison of Real-time Dense Stereo Approaches for use in the Automotive Environment
Mroz, F.; Breckon, T.P.
Abstract
In this work we evaluate the use of several real-time dense stereo algorithms as a passive 3D sensing technology for potential use as part of a driver assistance system or autonomous vehicle guidance. A key limitation in prior work in this area is that although significant comparative work has been done on dense stereo algorithms using de facto laboratory test sets only limited work has been done on evaluation in real world environments such as that found in potential automotive usage. This comparative study aims to provide an empirical comparison using automotive environment video imagery and compare this against dense stereo results drawn on standard test sequences in addition to considering the computational requirement against performance in real-time. We evaluate five chosen algorithms: Block Matching, Semi-Global Matching, No-Maximal Disparity, Cross-Based Local Approach, Adaptive Aggregation with Dynamic Programming. Our comparison shows a contrast between the results obtained on standard test sequences and those for automotive application imagery where a Semi-Global Matching approach gave the best empirical performance. From our study we can conclude that the noise present in automotive applications, can impact the quality of the depth information output from more complex algorithms (No-Maximal Disparity, Cross-Based Local Approach, Adaptive Aggregation with Dynamic Programming) resulting that in practice the disparity maps produced are comparable with those of simpler approaches such as Block Matching and Semi-Global Matching which empirically perform better in the automotive environment test sequences. This empirical result on automotive environment data contradicts the comparative result found on standard dense stereo test sequences using a statistical comparison methodology leading to interesting observations regarding current relative evaulation approaches.
Citation
Mroz, F., & Breckon, T. (2012). An Empirical Comparison of Real-time Dense Stereo Approaches for use in the Automotive Environment. EURASIP Journal on Image and Video Processing, 2012, Article 13. https://doi.org/10.1186/1687-5281-2012-13
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 3, 2012 |
Online Publication Date | Aug 16, 2012 |
Publication Date | Aug 16, 2012 |
Deposit Date | Dec 9, 2014 |
Publicly Available Date | Oct 29, 2015 |
Journal | EURASIP journal on image and video processing. |
Electronic ISSN | 1687-5281 |
Publisher | SpringerOpen |
Peer Reviewed | Peer Reviewed |
Volume | 2012 |
Article Number | 13 |
DOI | https://doi.org/10.1186/1687-5281-2012-13 |
Public URL | https://durham-repository.worktribe.com/output/1440607 |
Files
Published Journal Article
(10.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2012 Mroz and Breckon; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
You might also like
Progressively Select and Reject Pseudo-labelled Samples for Open-Set Domain Adaptation
(2024)
Journal Article
Generalized Zero-Shot Domain Adaptation via Coupled Conditional Variational Autoencoders
(2023)
Journal Article
Cross-Domain Structure Preserving Projection for Heterogeneous Domain Adaptation
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search