Skip to main content

Research Repository

Advanced Search

The effects of normal and shear stress wave phasing on coseismic landslide displacement

Brain, M.J.; Rosser, N.J.; Sutton, J.; Snelling, K.; Tunstall, N.; Petley, D.N.

The effects of normal and shear stress wave phasing on coseismic landslide displacement Thumbnail


Authors

J. Sutton

K. Snelling

Profile image of Neil Tunstall

Neil Tunstall neil.tunstall@durham.ac.uk
Senior Geotechnical Experimental Officer

D.N. Petley



Abstract

Predictive models used to assess the magnitude of coseismic landslide strain accumulation in response to earthquake ground shaking typically consider slope-parallel ground accelerations only and ignore both the influence of coseismic slope-normal ground accelerations, and the phase relationship between dynamic slope-normal and slope-parallel accelerations. We present results of a laboratory study designed to assess the significance of the phase offset between slope-normal and slope-parallel cyclic stresses on the generation of coseismic landslide displacements. Using a dynamic back-pressured shearbox that is capable of simulating variably-phased slope-normal and slope-parallel dynamic loads, we subjected sediment samples to a range of dynamic loading scenarios indicative of earthquake-induced ground shaking. We detail the variations in strain accumulation observed when slope-normal and slope-parallel stresses occur independently and simultaneously, both in and out of phase, using a range of dynamic stress amplitudes. Our results show that the instantaneous phasing of dynamic stresses is critical in determining the amount of coseismic landslide displacement, which may vary by up to an order of magnitude based solely on wave phasing effects. Instantaneous strain rate is an exponential function of the distance normal to the Mohr Coulomb failure envelope in plots of shear stress against normal effective stress. This distance is strongly controlled by the phase offset between dynamic normal and shear stresses. Our results demonstrate that conditions considered by conventional coseismic slope stability models can either over- or under-estimate earthquake-induced landslide displacement by up to an order of magnitude. This has important implications for accurate assessment of coseismic landslide hazard.

Citation

Brain, M., Rosser, N., Sutton, J., Snelling, K., Tunstall, N., & Petley, D. (2015). The effects of normal and shear stress wave phasing on coseismic landslide displacement. Journal of Geophysical Research, 120(6), 1009-1022. https://doi.org/10.1002/2014jf003417

Journal Article Type Article
Acceptance Date May 7, 2015
Online Publication Date Jun 6, 2015
Publication Date Jul 31, 2015
Deposit Date May 8, 2015
Publicly Available Date Nov 20, 2015
Journal Journal of geophysical research. Earth surface.
Print ISSN 0148-0227
Electronic ISSN 2156-2202
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 120
Issue 6
Pages 1009-1022
DOI https://doi.org/10.1002/2014jf003417
Keywords Landslide, Earthquake, Newmark analysis, Wave phasing.
Public URL https://durham-repository.worktribe.com/output/1429697

Files

Published Journal Article (1.9 Mb)
PDF

Copyright Statement
Brain, M. J., N. J. Rosser, J. Sutton, K. Snelling, N. Tunstall, and D. N. Petley (2015), The effects of normal and shear stress wave phasing on coseismic landslide displacement. Journal of Geophysical Research: Earth Surface, 120, 1009–1022, 10.1002/2014JF003417 (DOI). To view the published open abstract, go to http://dx.doi.org and enter the DOI.






You might also like



Downloadable Citations