Skip to main content

Research Repository

Advanced Search

The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles

Liu, S.; Fang, F.; Wu, J.J.; Zhang, K.

The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles Thumbnail


Authors

S. Liu

F. Fang

Profile image of Junjie Wu

Junjie Wu junjie.wu@durham.ac.uk
Honorary Professor

K. Zhang



Abstract

Biofouling is still one of the most challenging issues of nanofiltration. One of the practical strategies to reduce biofouling is to develop novel anti-biofouling membranes. Herein, biogenic silver nanoparticles (BioAg0-6) with the averaged diameter of only 6 nm were firstly grafted on the surface of polyamide NF membrane. The effect of grafted BioAg0-6 on the performance of thin-film composite (TFC) NF membranes was systematically investigated with a comparison to the grafted chemical AgNPs. BioAg0-6 grafted membrane (TFC-S-BioAg) increased the hydrophilicity of the TFC membrane and water permeability, while maintaining the relatively high salt rejection. The result of silver leaching experiment indicated that the grafted BioAg0-6 had a better stability on the membranes, the ratio of remained silver in the TFC-S-BioAg membrane was 95%, after soaked in pure water for 50 days. After 4 month immersion, the rejection of TFC-S-BioAg membrane remained more than 90% of initial rejection. The results of disk diffusion test revealed that both of TFC-S-BioAg membrane and TFC-S-ChemAg membrane showed effective anti-bacterial ability to inhibit Pseudomonas aeruginosa and Escherichia coli growth, the TFC-S-BioAg membrane showed more excellent and longer lasting antibacterial property. Therefore, BioAg0-6 grafted TFC membranes could be potential as an effective strategy to decrease biofouling in nanofiltration process.

Citation

Liu, S., Fang, F., Wu, J., & Zhang, K. (2015). The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles. Desalination, 375, 121-128. https://doi.org/10.1016/j.desal.2015.08.007

Journal Article Type Article
Acceptance Date Aug 6, 2015
Online Publication Date Aug 27, 2015
Publication Date Nov 2, 2015
Deposit Date Feb 3, 2016
Publicly Available Date Aug 27, 2016
Journal Desalination
Print ISSN 0011-9164
Electronic ISSN 1873-4464
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 375
Pages 121-128
DOI https://doi.org/10.1016/j.desal.2015.08.007
Public URL https://durham-repository.worktribe.com/output/1420746

Files






You might also like



Downloadable Citations