Skip to main content

Research Repository

Advanced Search

Quantitative Evaluation of Stereo Visual Odometry for Autonomous Vessel Localisation in Inland Waterway Sensing Applications

Kriechbaumer, T.; Blackburn, K.; Breckon, T.P.; Hamilton, O.; Riva-Casado, M.

Quantitative Evaluation of Stereo Visual Odometry for Autonomous Vessel Localisation in Inland Waterway Sensing Applications Thumbnail


Authors

T. Kriechbaumer

K. Blackburn

O. Hamilton

M. Riva-Casado



Abstract

Autonomous survey vessels can increase the efficiency and availability of wide-area river environment surveying as a tool for environment protection and conservation. A key challenge is the accurate localisation of the vessel, where bank-side vegetation or urban settlement preclude the conventional use of line-of-sight global navigation satellite systems (GNSS). In this paper, we evaluate unaided visual odometry, via an on-board stereo camera rig attached to the survey vessel, as a novel, low-cost localisation strategy. Feature-based and appearance-based visual odometry algorithms are implemented on a six degrees of freedom platform operating under guided motion, but stochastic variation in yaw, pitch and roll. Evaluation is based on a 663 m-long trajectory (>15,000 image frames) and statistical error analysis against ground truth position from a target tracking tachymeter integrating electronic distance and angular measurements. The position error of the feature-based technique (mean of ±0.067 m) is three times smaller than that of the appearance-based algorithm. From multi-variable statistical regression, we are able to attribute this error to the depth of tracked features from the camera in the scene and variations in platform yaw. Our findings inform effective strategies to enhance stereo visual localisation for the specific application of river monitoring.

Citation

Kriechbaumer, T., Blackburn, K., Breckon, T., Hamilton, O., & Riva-Casado, M. (2015). Quantitative Evaluation of Stereo Visual Odometry for Autonomous Vessel Localisation in Inland Waterway Sensing Applications. Sensors, 15(12), 31869-31887. https://doi.org/10.3390/s151229892

Journal Article Type Article
Acceptance Date Dec 9, 2015
Online Publication Date Dec 17, 2015
Publication Date Dec 17, 2015
Deposit Date Mar 16, 2016
Publicly Available Date Mar 23, 2016
Journal Sensors
Electronic ISSN 1424-8220
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 15
Issue 12
Pages 31869-31887
DOI https://doi.org/10.3390/s151229892
Public URL https://durham-repository.worktribe.com/output/1417011

Files

Published Journal Article (5.3 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).






You might also like



Downloadable Citations