C. Obermeier
Pan-Planets: Searching for hot Jupiters around cool dwarfs
Obermeier, C.; Koppenhoefer, J.; Saglia, R.P.; Henning, T.; Bender, R.; Kodric, M.; Deacon, N.; Riffeser, A.; Burgett, W.; Chambers, K.C.; Draper, P.W.; Flewelling, H.; Hodapp, K.W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E.A.; Metcalfe, N.; Price, P.A.; Sweeney, W.; Wainscoat, R.J.; Waters, C.
Authors
J. Koppenhoefer
R.P. Saglia
T. Henning
R. Bender
M. Kodric
N. Deacon
A. Riffeser
W. Burgett
K.C. Chambers
P.W. Draper
H. Flewelling
K.W. Hodapp
N. Kaiser
R.-P. Kudritzki
E.A. Magnier
Dr Nigel Metcalfe nigel.metcalfe@durham.ac.uk
Assistant Professor
P.A. Price
W. Sweeney
R.J. Wainscoat
C. Waters
Abstract
The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 h. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters Teff and log g of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60 000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find 3.0+3.3-1.6 hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least 0.17b(+0.67-0.04) %, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, 0.14 (+0.15-0.076) %. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of 0.11 (+0.37-0.02) % in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. This limit is a significant improvement over previous estimates where the lowest limit published so far is 1.1% found in the WFCAM Transit Survey. Therefore we cannot yet confirm the theoretical prediction of a lower occurrence rate for cool stars.
Citation
Obermeier, C., Koppenhoefer, J., Saglia, R., Henning, T., Bender, R., Kodric, M., …Waters, C. (2016). Pan-Planets: Searching for hot Jupiters around cool dwarfs. Astronomy & Astrophysics, 587, Article A49. https://doi.org/10.1051/0004-6361/201527633
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 10, 2015 |
Online Publication Date | Feb 16, 2016 |
Publication Date | Feb 16, 2016 |
Deposit Date | Aug 18, 2016 |
Publicly Available Date | Aug 23, 2016 |
Journal | Astronomy and astrophysics. |
Print ISSN | 0004-6361 |
Electronic ISSN | 1432-0746 |
Publisher | EDP Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 587 |
Article Number | A49 |
DOI | https://doi.org/10.1051/0004-6361/201527633 |
Public URL | https://durham-repository.worktribe.com/output/1406187 |
Files
Published Journal Article
(9 Mb)
PDF
Copyright Statement
Reproduced with permission from Astronomy & Astrophysics, © ESO.
You might also like
The VST ATLAS quasar survey I: Catalogue of photometrically selected quasar candidates
(2023)
Journal Article
VST ATLAS galaxy cluster catalogue I: cluster detection and mass calibration
(2023)
Journal Article
The local hole: a galaxy underdensity covering 90 per cent of sky to ≈200 Mpc
(2022)
Journal Article
The nature of sub-millimetre galaxies II: an ALMA comparison of SMG dust heating mechanisms
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search