M. Elliot-Ripley
Phases of kinky holographic nuclear matter
Elliot-Ripley, M.; Sutcliffe, P.M.; Zamaklar, M.
Authors
Professor Paul Sutcliffe p.m.sutcliffe@durham.ac.uk
Professor
Dr Marija Zamaklar marija.zamaklar@durham.ac.uk
Associate Professor
Abstract
Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.
Citation
Elliot-Ripley, M., Sutcliffe, P., & Zamaklar, M. (2016). Phases of kinky holographic nuclear matter. Journal of High Energy Physics, 2016(10), Article 088. https://doi.org/10.1007/jhep10%282016%29088
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 2, 2016 |
Online Publication Date | Oct 17, 2016 |
Publication Date | Oct 17, 2016 |
Deposit Date | Oct 24, 2016 |
Publicly Available Date | Oct 24, 2016 |
Journal | Journal of High Energy Physics |
Print ISSN | 1126-6708 |
Electronic ISSN | 1029-8479 |
Publisher | Scuola Internazionale Superiore di Studi Avanzati (SISSA) |
Peer Reviewed | Peer Reviewed |
Volume | 2016 |
Issue | 10 |
Article Number | 088 |
DOI | https://doi.org/10.1007/jhep10%282016%29088 |
Public URL | https://durham-repository.worktribe.com/output/1402349 |
Files
Published Journal Article
(771 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Open Access, © The Author(s) 2016 Article funded by SCOAP3. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
You might also like
Topological Solitons
(2004)
Book
A hyperbolic analogue of the Atiyah-Hitchin manifold
(2022)
Journal Article
Creation and observation of Hopfions in magnetic multilayer systems
(2021)
Journal Article
Spectral curves of hyperbolic monopoles from ADHM
(2021)
Journal Article
Threaded Rings that Swim in Excitable Media
(2019)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search