Dr Zahur Ullah zahur.ullah@durham.ac.uk
Associate Professor
Dr Zahur Ullah zahur.ullah@durham.ac.uk
Associate Professor
Professor William Coombs w.m.coombs@durham.ac.uk
Professor
Professor Charles Augarde charles.augarde@durham.ac.uk
Head Of Department
Purpose A variety of meshless methods have been developed in the last twenty years with an intention to solve practical engineering problems, but are limited to small academic problems due to associated high computational cost as compared to the standard finite element methods (FEM). The main purpose of this paper is the development of an efficient and accurate algorithms based on meshless methods for the solution of problems involving both material and geometrical nonlinearities. Design/methodology/approach A parallel two-dimensional linear elastic computer code is presented for a maximum entropy basis functions based meshless method. The two-dimensional algorithm is subsequently extended to three-dimensional adaptive nonlinear and three-dimensional parallel nonlinear adaptively coupled finite element, meshless method cases. The Prandtl-Reuss constitutive model is used to model elasto-plasticity and total Lagrangian formulations are used to model finite deformation. Furthermore, Zienkiewicz & Zhu and Chung & Belytschko error estimation procedure are used in the FE and meshless regions of the problem domain respectively. The MPI library and open-source software packages, METIS and MUMPS are used for the high performance computation. Findings Numerical examples are given to demonstrate the correct implementation and performance of the parallel algorithms. The agreement between the numerical and analytical results in the case of linear-elastic example is excellent. For the non-linear problems load displacement curve are compared with the reference FEM and found in a very good agreement. As compared to the FEM, no volumetric locking was observed in the case of meshless method. Furthermore, it is shown that increasing the number of processors up to a given number improve the performance of parallel algorithms in term of simulation time, speedup and efficiency. Originality/value Problems involving both material and geometrical nonlinearities are of practical importance in many engineering applications, e.g. geomechanics, metal forming and biomechanics. A family of parallel algorithms has been developed in this paper for these problems using adaptively coupled finite-element, meshless method (based on maximum entropy basis functions) for distributed memory computer architectures.
Ullah, Z., Coombs, W. M., & Augarde, C. E. (2016). Parallel computations in nonlinear solid mechanics using adaptive finite element and meshless methods. Engineering Computations, 33(4), 1161-1191. https://doi.org/10.1108/EC-06-2015-0166
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 3, 2015 |
Online Publication Date | Jun 13, 2016 |
Publication Date | Jun 13, 2016 |
Deposit Date | Nov 9, 2015 |
Publicly Available Date | Jun 13, 2017 |
Journal | Engineering Computations |
Print ISSN | 0264-4401 |
Publisher | Emerald |
Peer Reviewed | Peer Reviewed |
Volume | 33 |
Issue | 4 |
Pages | 1161-1191 |
DOI | https://doi.org/10.1108/EC-06-2015-0166 |
Public URL | https://durham-repository.worktribe.com/output/1398410 |
Accepted Journal Article
(4.8 Mb)
PDF
Copyright Statement
This article is © Emerald Group Publishing and permission has been granted for this version to appear here http://dro.dur.ac.uk/16820/. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.
UKACM Proceedings 2024
(2024)
Presentation / Conference Contribution
Simulation of strain localisation with an elastoplastic micropolar material point method
(2024)
Presentation / Conference Contribution
Consequences of Terzaghi’s effective stress decomposition in the context of finite strain poro-mechanics
(2024)
Presentation / Conference Contribution
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search