S. Dye
Revealing the complex nature of the strong gravitationally lensed system H-ATLAS J090311.6+003906 using ALMA
Dye, S.; Furlanetto, C.; Swinbank, A.M.; Vlahakis, C.; Nightingale, J.W.; Dunne, L.; Eales, S.A.; Smail, Ian; Oteo, I.; Hunter, T.; Negrello, M.; Dannerbauer, H.; Ivison, R.J.; Gavazzi, R.; Cooray, A.; van der Werf, P.
Authors
C. Furlanetto
Professor Mark Swinbank a.m.swinbank@durham.ac.uk
Professor
C. Vlahakis
J.W. Nightingale
L. Dunne
S.A. Eales
Ian Smail ian.smail@durham.ac.uk
Emeritus Professor
I. Oteo
T. Hunter
M. Negrello
H. Dannerbauer
R.J. Ivison
R. Gavazzi
A. Cooray
P. van der Werf
Abstract
We have modelled Atacama Large Millimetre/sub-millimetre Array (ALMA) long baseline imaging of the strong gravitational lens system H-ATLAS J090311.6+003906 (SDP.81). We have reconstructed the distribution of band 6 and 7 continuum emission in the z = 3.042 source and determined its kinematic properties by reconstructing CO(5–4) and CO(8–7) line emission in bands 4 and 6. The continuum imaging reveals a highly non-uniform distribution of dust with clumps on scales of ∼200 pc. In contrast, the CO line emission shows a relatively smooth, disc-like velocity field which is well fitted by a rotating disc model with an inclination angle of (40 ± 5)° and an asymptotic rotation velocity of 320 km s−1. The inferred dynamical mass within 1.5 kpc is (3.5 ± 0.5) × 1010 M⊙ which is comparable to the total molecular gas masses of (2.7 ± 0.5) × 1010 M⊙ and (3.5 ± 0.6) × 1010 M⊙ from the dust continuum emission and CO emission, respectively. Our new reconstruction of the lensed Hubble Space Telescope near-infrared emission shows two objects which appear to be interacting, with the rotating disc of gas and dust revealed by ALMA distinctly offset from the near-infrared emission. The clumpy nature of the dust and a low value of the Toomre parameter of Q ∼ 0.3 suggest that the disc is in a state of collapse. We estimate a star formation rate in the disc of 470 ± 80 M⊙ yr−1 with an efficiency ∼65 times greater than typical low-redshift galaxies. Our findings add to the growing body of evidence that the most infrared luminous, dust obscured galaxies in the high-redshift Universe represent a population of merger-induced starbursts.
Citation
Dye, S., Furlanetto, C., Swinbank, A., Vlahakis, C., Nightingale, J., Dunne, L., …van der Werf, P. (2015). Revealing the complex nature of the strong gravitationally lensed system H-ATLAS J090311.6+003906 using ALMA. Monthly Notices of the Royal Astronomical Society, 452(3), 2258-2268. https://doi.org/10.1093/mnras/stv1442
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 26, 2015 |
Publication Date | Sep 21, 2015 |
Deposit Date | Feb 9, 2016 |
Publicly Available Date | Feb 12, 2016 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 452 |
Issue | 3 |
Pages | 2258-2268 |
DOI | https://doi.org/10.1093/mnras/stv1442 |
Keywords | Gravitational lensing: strong, Galaxies: structure. |
Public URL | https://durham-repository.worktribe.com/output/1389355 |
Files
Published Journal Article
(4.5 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
3D tomography of the giant Lyα nebulae of z ≈ 3–5 radio-loud AGN
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search