J.Y. Li
Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqilafu pluton, northwestern Tibetan Plateau: A case for crust–mantle interaction
Li, J.Y.; Niu, Yaoling; Hu, Y.; Chen, S.; Zhang, Y.; Duan, M.; Sun, P.
Authors
Yaoling Niu
Y. Hu
S. Chen
Y. Zhang
M. Duan
P. Sun
Abstract
We present a detailed study of geochronology, mineral chemistries, bulk-rock major and trace element abundances, and Sr–Nd–Hf isotope compositions of the granodiorite and associated dioritic dikes in the Hongqilafu pluton at the northwestern margin of the Tibetan Plateau. The granodiorite and dioritic dikes yielded zircon U–Pb ages of ~ 104 Ma and ~ 100 Ma, respectively. The dioritic dikes comprise varying lithologies of gabbroic diorite, diorite porphyry and granodiorite porphyry, exhibiting a compositional spectrum from intermediate to felsic rocks. Their mineral compositions display disequilibrium features such as large major element compositional variations of plagioclase, clinopyroxene and amphibole crystals. These dioritic dikes are enriched in incompatible elements (Ba, Rb, Th, U, K) and Sr–Nd–Hf isotopes (87Sr/86Sri: 0.7066 to 0.7071, εNd(t): − 5.3 to − 7.4, εHf(t): − 3.6 to − 6.2). We suggest that the dioritic dikes were most likely derived from partial melting of mantle wedge metasomatized by the subducted/subducting seafloor with a sediment component, followed by AFC processes with fractional crystallization of clinopyroxene, amphibole and plagioclase and assimilation of lower continental crust. The mantle-wedge derived magma parental to the dioritic dikes underplated and induced the lower continental crust to melt, forming the felsic crustal magma parental to the granodiorite with mantle melt signatures and having more enriched isotope compositions (87Sr/86Sri: 0.7087 to 0.7125, εNd(t): − 9.5 to − 11.6, εHf(t): − 10.3 to − 14.1) than those of the dioritic dikes. The Hongqilafu pluton is thus the product of mantle–crust interaction at an active continental margin subduction setting over the period of several million years. This understanding further indicates that the closure timing of the Shyok back-arc basin and the collision between the Kohistan–Ladakh Arc and the Karakoram Terrane may have taken place later than ~ 100 Ma.
Citation
Li, J., Niu, Y., Hu, Y., Chen, S., Zhang, Y., Duan, M., & Sun, P. (2016). Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqilafu pluton, northwestern Tibetan Plateau: A case for crust–mantle interaction. Lithos, 260, 300-314. https://doi.org/10.1016/j.lithos.2016.05.028
Journal Article Type | Article |
---|---|
Acceptance Date | May 31, 2016 |
Online Publication Date | Jun 10, 2016 |
Publication Date | Sep 1, 2016 |
Deposit Date | Jun 30, 2016 |
Publicly Available Date | Jun 10, 2017 |
Journal | Lithos |
Print ISSN | 0024-4937 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 260 |
Pages | 300-314 |
DOI | https://doi.org/10.1016/j.lithos.2016.05.028 |
Public URL | https://durham-repository.worktribe.com/output/1380220 |
Files
Accepted Journal Article
(1.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2016 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Chemical variations of loess from the Chinese Loess Plateau and its implications
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search