Timothy Proctor
Ancilla-driven quantum computation for qudits and continuous variables
Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; Andersson, Erika; Kendon, Viv
Authors
Melissa Giulian
Natalia Korolkova
Erika Andersson
Dr Vivien Kendon viv.kendon@durham.ac.uk
Academic Visitor
Abstract
Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general “quantum variable” formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated “quantum memory” register and which may be applied to the setting of qubits, qudits (for d > 2), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of a single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. Finally, we discuss settings in which these models may be of practical interest.
Citation
Proctor, T., Giulian, M., Korolkova, N., Andersson, E., & Kendon, V. (2017). Ancilla-driven quantum computation for qudits and continuous variables. Physical Review A, 95(5), Article 052317. https://doi.org/10.1103/physreva.95.052317
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 27, 2017 |
Online Publication Date | May 10, 2017 |
Publication Date | May 10, 2017 |
Deposit Date | Aug 18, 2017 |
Publicly Available Date | Aug 18, 2017 |
Journal | Physical Review A |
Print ISSN | 2469-9926 |
Electronic ISSN | 2469-9934 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 95 |
Issue | 5 |
Article Number | 052317 |
DOI | https://doi.org/10.1103/physreva.95.052317 |
Public URL | https://durham-repository.worktribe.com/output/1378746 |
Related Public URLs | https://arxiv.org/abs/1510.06462 |
Files
Published Journal Article
(568 Kb)
PDF
Copyright Statement
Reprinted with permission from the American Physical Society: Physical Review A 95, 052317 © (2017) by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.
You might also like
Quantum algorithms for scientific computing.
(2024)
Journal Article
Cycle discrete-time quantum walks on a noisy quantum computer
(2024)
Journal Article
Using copies can improve precision in continuous-time quantum computing
(2023)
Journal Article
Comparing the hardness of MAX 2-SAT problem instances for quantum and classical algorithms
(2023)
Journal Article
Experimental test of search range in quantum annealing
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search